机器学习数学模型:贝叶斯信念网,贝叶斯朴素分类器 里面包含上课时的PPT,PDF文档
1
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法[1]。最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。
2022-03-15 08:50:06 1.05MB 机器学习 深度学习 人工智能 AI
1
基于朴素贝叶斯分类器的文本分类算法(C语言)
2022-03-13 11:06:41 39KB 基于 朴素 贝叶斯 分类
1
朴素贝叶斯垃圾邮件讲解课件。朴素贝叶斯垃圾邮件讲解课件.朴素贝叶斯垃圾邮件讲解课件
2022-03-12 18:07:03 2.27MB 人工智能 垃圾邮件 机器学习
1
Spring-Boot-Neo4j-Movies Spring-Boot集成Neo4j结合Spark的朴素贝叶斯分类器实现基于电影知识图谱的智能问答系统 博客地址: 项目博客地址: 升级Spark依赖,由原来的2.3升级到2.4,GitHub官方提醒> = 1.0.0,<= 2.3.2之间的版本容易受到攻击 spark2.4 == >scala2.11 and scala2.12 <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core --> org.apache.spark spark-core_2.12 2.4.0 <
2022-03-10 19:18:34 1.36MB 附件源码 文章源码
1
功能1. NaiveBayes.predict(_) 2. NaiveBayes.find(_) 描述1.返回一个或多个测试实例的估计标签以及估计的准确性。 2. 以降序返回具有各自概率的标签。 使用鸢尾花数据集的示例 加载fisheriris X = 测量值; Y = 物种; Xnew = [min(X);mean(X);max(X)]; mdl = NaiveBayes('gaussian'); mdl = mdl.fit(X,Y) Ypred = mdl.predict(Xnew) Ypred = 'setosa' '杂色' '弗吉尼亚' Ynew = {'versicolor';'versicolor';'virginica'}; 准确率=accuracy_score(Ypred,Ynew) 精度= 0.6667 查看脚本文件中描述的更多示例。
2022-03-04 13:22:55 5KB matlab
1
传统数据挖掘分类算法在不平衡数据集上分类效果不佳,可以将代价敏感思想与传统分类算法相结合解决不平衡数据分类问题.但在代价敏感学习中,代价的确定需要足够的先验知识,难以把握.针对上述不足,构造针对不平衡数据分布的自适应代价函数,引进全局代价矩阵,对传统的朴素贝叶斯分类算法进行改进.在UCI数据集上的实验结果表明,提出的基于代价敏感的朴素贝叶斯分类算法对于不平衡数据分类是有效可行的.
1
机器学习实战(第四章-朴素贝叶斯-所有代码与详细注解及相关数据文件-python3.7) 机器学习实战(第四章-朴素贝叶斯-所有代码与详细注解及相关数据文件-python3.7)
1
朴素贝叶斯算法在 Kaggle 上可用的肥料数据的应用 数据集来源:https ://www.kaggle.com/gdabhishek/counter-prediction
2022-02-21 09:17:44 42KB 算法 kaggle
使用基于朴素贝叶斯的机器学习的 3 类问题的一维矩阵分类。 它还包含一个基于矩阵的示例,用于输入大小为 12 和 3 个特征的样本
2022-02-21 00:47:30 4KB matlab
1