1、基于深度学习opencv实现电单车识别检测源码+模型(6800多个目标数据训练)+评估指标曲线+操作使用说明 2、模型文件使用含有6800+个目标数据集训练,训练集大且多样性充足 3、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 4、迭代200次,模型拟合较好。 5、识别一个类别:“电单车” 【备注】有相关使用问题,可以私信留言跟博主沟通。
基于深度学习的图像中物体分类研究源码+数据集(毕业设计).zip数据集放在文档链接里,需要的点击提取即可。本题目研究如何确定图像中的物体,并根据识别出来的物体进行图像分类。使用像素值作为神经网络的输入值,自动找到有用的像素组合,形成更高层级的特征,然后将其用于实际的分类。 需要熟悉Python或Java,熟悉深度神经网络,具备数据挖掘和机器学习知识。 基于深度学习的图像中物体分类研究源码+数据集(毕业设计).zip数据集放在文档链接里,需要的点击提取即可。本题目研究如何确定图像中的物体,并根据识别出来的物体进行图像分类。使用像素值作为神经网络的输入值,自动找到有用的像素组合,形成更高层级的特征,然后将其用于实际的分类。 需要熟悉Python或Java,熟悉深度神经网络,具备数据挖掘和机器学习知识。 基于深度学习的图像中物体分类研究源码+数据集(毕业设计).zip数据集放在文档链接里,需要的点击提取即可。本题目研究如何确定图像中的物体,并根据识别出来的物体进行图像分类。使用像素值作为神经网络的输入值,自动找到有用的像素组合,形成更高层级的特征,然后将其用于实际的分类。 需要熟悉Pytho
python毕业设计基于深度学习卷积神经网络的网站验证码识别研究与实现项目源码+全部数据.zip这是本科毕业设计的课题,“基于深度学习的网站验证码识别研究与实现”。主要是利用卷积神经网络,基于TensorFlow平台,构建了三层卷积两层全联接模型,训练出的一个准确率为91.3%的识别模型。再基于Django构建登陆系统,使用selenium实现自动测试,完成验证码从识别到自动登录的全过程。 python毕业设计基于深度学习卷积神经网络的网站验证码识别研究与实现项目源码+全部数据.zip这是本科毕业设计的课题,“基于深度学习的网站验证码识别研究与实现”。主要是利用卷积神经网络,基于TensorFlow平台,构建了三层卷积两层全联接模型,训练出的一个准确率为91.3%的识别模型。再基于Django构建登陆系统,使用selenium实现自动测试,完成验证码从识别到自动登录的全过程。 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zip 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zip 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zi
基于深度学习的粮食作物病虫害识别系统源码+教程(毕业设计).zip已获导师指导并通过的高分项目。本项目是一个非常完整的深度学习实践项目,内附教程+论文。 目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、 算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于 云计算技术与人工智能深度学习的计算机视觉技术,开发了一套跨平 台、易使用的农作物病虫害自动识别系统,大幅降低了人工智能技术的使用门槛,使农业 从业人员也可享受智能技术红利,促进智慧农业发展。 基于深度学习的粮食作物病虫害识别系统源码+教程(毕业设计).zip已获导师指导并通过的高分项目。本项目是一个非常完整的深度学习实践项目,内附教程+论文。 目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、 算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于 云计算技术与人工智能深度学习的计算机视觉技术,开发了一套跨平 台、易使用的农作物病虫害自动识别系统,大幅降低了人工智能技术的使用门槛,使农业 从业人员也可享受智能技术红利,促进智慧农业发展。
基于深度学习LSTM算法的电商评论的情感分析(JD商城数据)全部资料.zip实验流程 对京东网站进行分析,并且通过分布式爬虫进行数据采集 对采集到的数据进行清洗,包括删掉重复数据,删掉垃圾数据等 对清理好的数据进行分词,停词等操作,并对结果保存到新的文档 将分词之后的数据,通过word2vec,建立词向量和索引表 对清洗后的数据,进行数据处理,将分数为1、2的定为不满意,将分数为3,4,5的定为满意 平衡正负样本数据,并且通过样本数据选出合适的文本长度值 词响亮与标签结合,生成可供训练的样本数据 建立分批(batch)函数 通过Tensorflow中的rnn模块进行lstm建模 开始训练,每1000次输出一次结果,每10000次,保存一下模型 绘制loss和accurate图像 实验总结 情感分析是一项非常重要的工作,无论是对商品满意度,电影满意度,政府满意度或者是群众情绪导向等多个领域,情感分析都是饰演着重要的角色,本实验通过大规模分布式爬虫对数据进行采集,获得到了目标数据,然后进行了数据处理,通过word2vec模型建立出了词向量和索引,在通过LSTM算法,进行了模型训练,根据最终
1、基于深度学习+opencv实现抽烟打电话识别检测源码+模型文件+评估指标曲线+使用说明 2、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 3、4000多张图片数据训练,7000多个目标,迭代200次,模型拟合较好。 4、识别2个类别,分别是“打电话”和“抽烟” 【备注】有相关使用问题,可以私信留言跟博主沟通。
基于深度学习的行人重识别系统代码实现 python代码实现 训练好的行人重识别模型 可重新训练 基于LINUX系统 包含可视化界面 包含行人重识别训练集、测试集
2022-11-30 12:28:57 321.86MB 行人重识别 深度学习 可视化 图像识别
1
基于TensorFlow框架搭建卷积神经网络对电池片电致发光图像进行缺陷识别。选取公开的数据集,其中包含了电池片的不同种类缺陷。在传统的VGGNet网络的基础上使用全卷积神经网络进行训练,并分析不同损失函数和dropout概率在数据集上的训练效果。经过实验证明,该算法实现了对电池片是否有缺陷的准确识别。研究还得出压缩网络结构对算法训练速率能有大幅提升,这使得简化的模型更具有可迁移性,为大范围的实时缺陷识别提供了一种有效方案。
2022-11-29 21:02:22 418KB 电致发光
1
深度学习课程大作业,使用Keras实现了一个表现良好的看图作诗模型。
2022-11-29 16:27:59 35.78MB 深度学习
基于深度学习的卡尔曼算法python
2022-11-29 16:27:46 29KB py
1