半监督学习生成对抗网络的Tensorflow实现
2021-05-11 10:06:34 19.76MB Python开发-机器学习
1
这是xiaojin zhu的学生Andrew Brian Goldberg于2010年写的一个report,指出了半监督学习的未来发展方向。
2021-05-09 11:07:44 3.23MB semi-supervised new directions SVM
1
甘伯特 论文代码GAN-BERT:具有健壮标签分类示例的生成式对抗性学习和一堆带标签的示例已在2020年ACL上发表-Danilo Croce (罗马大学Tor Vergata),朱塞佩·卡斯特鲁奇( Giuseppe Castellucci) (亚马逊)和Roberto Basili的短文(罗马大学的Tor Vergata)。该文件可以在找到。 GAN-BERT是BERT的扩展,它使用“生成对抗”设置来实现有效的半监督学习模式。它允许使用由有限数量的标记示例和未标记材料的较大子集组成的数据集训练BERT。 GAN-BERT可用于序列分类任务(也涉及对文本对)。 该代码在TREC数据集上运行GAN-BERT实验,以实现细粒度的“问题分类”任务。我们在此程序包中提供了代码和用于运行实验的数据,方法是使用2%的标记材料(109个示例)和5343个未标记的示例。测试集由500个带注释的示例组成
1
一篇数据挖掘课的作业论文。 关于半监督学习方面的综述性文章。 所参考文献在2009年以前。 目前这方面的中文文献相对较少,希望我的这篇作业能对有兴趣做这方面研究的朋友有所帮助,其中错误之处还请大家多多指出。
1
针对光照、表情变化给人脸识别造成的影响以及大型人脸图像库的训练样本中只有部分标记的问题,结合多通道Log-Gabor小波和半监督流形学习算法,提出一种新的人脸图像检索方法。该方法首先使用Log-Gabor小波对人脸图像进行滤波获得特征矩阵,进一步利用提出的二维半监督流形学习算法进行维数约简,得到低维判别特征。由于该方法直接作用于Log-Gabor特征矩阵,克服了小样本带来的奇异问题;另外,通过充分利用标记和未标记信息,还保留了数据的局部流形结构,增强了特征匹配的相似性。在CMU PIE和AR人脸数据库上的实验结果表明,该方法有效且优于其他方法。
1
最近找了个程序说是关于半监督学习方面的,但是我有些看不懂程序,希望大家下载后分享一下自己的看法,如果是高手最好能详细讲解一下,谢谢大家了。
2021-03-19 21:07:39 10KB 半监督学习
1
通常将序数回归(OR)定义为输入样本按序数等级进行排序的任务。 OR已经发现了各种各样的应用程序,并且已经完成了很多工作。 但是,大多数现有工作都集中在有监督/半监督的OR分类上,并且尚未明确解决半监督或OR聚类的问题。 在现实世界的OR应用程序中,标记大量的训练样本通常是耗时且昂贵的,而可以使用一组未标记的样本来建立OR模型。 此外,尽管样本标签不可用,但有时我们可以获得未标记样本的相对排名信息。 此样本排名信息可用于完善OR模型。 因此,如何在未加标签的样本上建立OR模型并将样本排名信息纳入提高聚类精度的过程仍然是OR应用程序的主要挑战。 在本文中,我们考虑了具有样本排序约束的半监督OR聚类问题,该问题给出了未标记样本的相对排名信息,并提出了一种用于半监督OR聚类的最大余量方法。 一方面,M²SORC寻求一组平行的超平面,以将未标记的样本划分为多个簇。 另一方面,提出了损失函数以将样本排名信息纳入聚类过程。 结果,制定了M²SORC的优化函数,以最大程度地增加最接近的相邻簇的余量,同时最大程度地减少与样本排序约束相关的损失。 在OR数据集上进行的大量实验表明,所提出的M²SORC方
2021-03-13 12:07:07 2.16MB Ordinal regression (OR); semisupervised
1
半监督词典学习,用于宽范围语义解析
2021-03-12 14:08:16 625KB 研究论文
1
深度半监督学习是一个快速发展的领域,具有一系列的实际应用。本文从模型设计和无监督损失函数的角度对深度半监督学习方法的基本原理和最新进展进行了全面的综述。
2021-03-06 20:09:53 2.41MB 深度半监督学习
1
用于半监督分类的图形卷积网络(GCN)的PyTorch实现
2021-03-03 19:44:44 215KB Python开发-机器学习
1