DFT的matlab源代码Ligpy-Cantera 木质素热解的动力学模型(ligpy-cantera) 威斯康星州直接顶石项目 由于缺乏详细的动力学模型,通过木质纤维素原料的热化学转化进行生物量增值受到限制。 除了增加对机械的理解外,还需要更详细的模型来优化用于生产燃料和化学品的工业生物质热解Craft.io。 为此,我们开发了涉及约100种和400个React的木质素热解动力学模型,该模型能够预测木质素热解过程中分子和官能团的时间演变。 该模型提供的信息超出了常规热解模型总产量的范围,而无需进行任何拟合,从而可以覆盖更广泛的原料和React条件。 在缓慢的热解实验中观察到了很好的一致性,使用超过200万次模拟进行的详尽的全局敏感性分析揭示了对模型预测差异最大的React(可以使用敏感性分析结果和可视化软件包)。 可以进行快速热解的模型预测,但是,最近开发的用于动力学控制的生物质快速热解的实验技术尚未应用于木质素。 这项工作是对ligpy原始工作的持续发展。 ligpy是为解决动力学模型而开发的软件包,我们在我们的2016 IECR论文中对此进行了描述, 。 请阅读文档以获取有关使
2024-09-29 19:45:24 5.59MB 系统开源
1
山东大学数值计算实验四(matlab代码+实验报告) 1、Cholesky分解 Computer Problems P101 2.6 山东大学数值计算实验四(matlab代码+实验报告) 山东大学数值计算实验四(matlab代码+实验报告) 山东大学数值计算实验四(matlab代码+实验报告) 1、Cholesky分解 Computer Problems P101 2.6 1、Cholesky分解 Computer Problems P101 2.6
2024-09-29 15:02:07 342KB 数值计算
1
斯坦纳问题的matlab代码
2024-09-28 10:34:43 16.42MB 系统开源
1
DFT的matlab源代码音频信号处理 Coursera上音乐应用程序的音频信号处理分配 注意:这是出于个人学习目的。 第一周 编程作业: 第二周 编程作业: 第三周 编程作业: 第四周 编程作业: 第五周 编程作业: 第六周 编程作业: 第七周 同行评分作业: 第八周 同行评分作业: 第9周 同行评分作业:
2024-09-27 20:19:54 21.96MB 系统开源
1
MATLAB中,`surf`函数是一个非常强大的工具,用于绘制三维曲面图。这篇文章将深入探讨如何使用`surf`函数以及它的一些关键参数和应用。让我们一起详细地了解一下。 `surf`函数的基本语法是`surf(X,Y,Z)`,其中`X`、`Y`和`Z`是三组数值向量或矩阵,它们定义了一个三维空间中的网格。`X`和`Y`定义了水平和垂直坐标轴,而`Z`则提供了对应于每个`(X,Y)`位置的高度值。例如,你可以通过以下方式创建一个简单的正弦波形曲面: ```matlab [X,Y] = meshgrid(-2*pi:0.1:2*pi,-2*pi:0.1:2*pi); Z = sin(sqrt(X.^2 + Y.^2)); surf(X,Y,Z) ``` 这里,`meshgrid`函数用于生成一个网格,`sin(sqrt(X.^2 + Y.^2))`计算了每个点的高度,最后`surf`函数绘制出曲面。 `surf`函数还支持其他参数,如颜色、线型、透明度等。例如,你可以通过`facecolor`和`edgecolor`来改变表面和边缘的颜色,或者使用`alpha`调整透明度: ```matlab surf(X,Y,Z,'FaceColor','red','EdgeColor','none','Alpha',0.5) ``` 此外,`surf`函数可以与`view`配合使用,以改变观察角度,帮助我们更好地理解三维模型。例如,`view(3)`提供经典的俯视视角,而`view([-30,20])`会设定一个倾斜的角度。 MATLAB还允许我们在曲面上添加颜色图(colormap),这可以帮助我们理解数据的分布。例如,通过`colormap('hot')`可以将颜色映射到温度渐变,更直观地显示高度变化: ```matlab surf(X,Y,Z) colormap('hot') ``` 另外,`surf`函数可以与其他MATLAB图形功能结合,如添加图例、标题、坐标轴标签等。例如: ```matlab surf(X,Y,Z) title('三维正弦波曲面') xlabel('X轴') ylabel('Y轴') zlabel('Z轴') ``` 除了基本的`surf`,MATLAB还提供了`surfc`和`surfl`函数。`surfc`在曲面下方添加了网格线,而`surfl`则可以绘制带有光照效果的曲面,使图像更具立体感。 总结来说,MATLAB的`surf`函数是探索和可视化三维数据的强大工具,它提供了丰富的自定义选项,能够帮助用户以各种方式呈现数据。通过学习和掌握这些功能,我们可以更有效地理解和展示复杂的数据结构。
2024-09-26 22:11:01 859B matlab
1
资源名称:二维四边形网格有限体积法Matlab程序 核心功能:该程序实现了基于二维四边形网格的有限体积法(Finite Volume Method, FVM),适用于任意仿射四边形网格的计算。有限体积法是一种强大的数值方法,广泛用于求解偏微分方程,特别是流体力学、热传导等领域的复杂物理问题。该程序通过离散化连续求解区域为一系列互不重叠的四边形控制体,并在每个控制体上应用守恒定律进行数值求解。 学习内容: 有限体积法基础:用户可以通过该程序深入理解有限体积法的基本原理,包括控制体的划分、物理量的积分、离散化方程的构建等。 网格生成与操作:程序支持任意仿射四边形网格,用户可以学习如何生成和操作这类网格,包括网格的划分、节点的编号、单元的连接等。 离散化技术:通过程序的实现,用户可以学习如何将连续的物理方程离散化为代数方程,以及不同离散化格式(如中心差分、上游差分等)的选择和应用。 数值解与误差分析:程序计算了L2和H1误差,这是评估数值解精度的重要指标。用户可以学习如何进行误差分析,了解不同网格密度和离散化方法对解的精度的影响。 结果可视化:程序可以画出数值解和精确解的对比图象.
2024-09-26 15:52:40 1.57MB matlab
1
基于扰动观测器的伺服系统摩擦补偿Matlab仿真 1.模型简介 模型为基于扰动观测器的摩擦补偿仿真,仿真基于永磁同步电机速度、电流双闭环控制结构开发,双环均采用PI控制,PI参数已经调好。 仿真中主要包含抗饱和PI控制器、摩擦力模型、扰动观测器、坐标变换、SVPWM、逆变器和永磁同步电机模块等,其中抗饱和PI控制器、摩擦力模型、扰动观测器、坐标变换、SVPWM模块均采用matlab function编程实现,其与C语言编程较为相似,容易进行实物移植。 模型均采用离散化仿真,其效果更接近实际数字控制系统。 2.算法简介 伺服系统中,由于摩擦力的存在,会降低系统响应,因此对摩擦力进行补偿是有必要的。 本仿真通过增加LuGre摩擦力模型,模拟摩擦力对系统性能的影响。 通过扰动观测器对摩擦力进行观测并进行补偿,降低摩擦力对系统性能的影响。 3.仿真效果 ① 加入摩擦力,速度给定为正弦波,模拟速度反复过零的情况。 由于摩擦力的存在,实际速度过零时不能很好的跟踪速度给定信号,如图1所示,0.6s前没有使用扰动观测器,速度过零时,速度跟踪误差很大。 0.6s后,开启扰动观测器,
2024-09-25 16:00:34 90KB matlab
1
光伏采用PLL控制并入电网,仿真模型包含详细的控制结构,锁相环控制并网逆变器的d轴和q轴电流,实现了并网有功无功功率的精确控制,仿真结果稳定,可以通过FFT看到直流电压环引起的低频振荡
2024-09-25 14:54:07 58KB simulink matlab 光伏并网 低频振荡
1
永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双闭环无感控制龙伯格观测器simulink仿真永磁同步电机双
2024-09-25 14:34:43 5KB 永磁同步电机 matlab simulink
1
matlab阻抗控制代码全身控制器 用于类人机器人的Matlab / Simulink全身控制器的集合。 依存关系 该存储库取决于以下软件/存储库: ,至少是R2014a版本(默认: R2017b ) ,至少是7.8版 并访问iCub模型。 (可选,用于和设备)。 注意:建议使用()安装whole-body-controllers及其大多数依赖项(即codyco-modules , icub-gazebo , icub-gazebo-wholebody gazebo-yarp-plugins , gazebo-yarp-plugins和WB-Toolbox及其依赖项)。启用ROBOTOLOGY_USES_GAZEBO , ROBOTOLOGY_ENABLE_DYNAMICS , ROBOTOLOGY_USES_MATLAB选项)。 安装及使用 将.bashrc文件中的环境变量YARP_ROBOT_NAME设置为要控制的机器人的名称。 支持的机械手名称列表: 机器人名称 关联的URDF模型 iCubGenova02 iCubGenova04 iCubGazeboV2_5 icubGaze
2024-09-25 09:19:31 623KB 系统开源
1