计算机组成原理与体系结构课程设计主要涵盖了对基本模型计算机的深入理解、指令执行流程的学习、微程序控制器设计、计算机部件单元电路的集成以及微程序编写和调试等方面的内容。通过对这些课程设计的实践,学生能够全面掌握计算机整机概念,并深入理解微程序控制方式计算机的设计方法。 在实验目的方面,学生需要理解基本模型计算机的功能和组成知识,学习计算机指令执行流程,掌握微程序控制器设计方法和LPM_ROM配置技术。在此基础上,学生应能够将单元电路组合成系统,定义和编写五条机器指令对应的微程序,并通过上机调试来掌握微程序设计方法和编写二进制微指令代码表。 实验原理部分指出,在部件实验过程中,各部件单元的控制信号是人工模拟产生的,而在微过程控制下,这些信号将自动产生,实现特定功能。数据通路的控制由微程序控制器完成,一条机器指令对应一个微程序。此外,课程设计还详细介绍了指令格式、数据通路框图的设计、24位微代码定义以及A、B、C字段的功能说明。例如,指令格式采用寄存器直接寻址方式,指令格式定义了操作码、源寄存器和目的寄存器。同时,对微程序流程图的绘制和微地址的设定也提出了要求。 本课程设计还涉及到三个控制台操作微程序的编写,这些微程序用于向RAM装入程序和数据、检查数据是否正确写入以及启动程序执行。实验中还包括24位微代码中各信号功能的介绍,如微地址输出信号、ALU操作选择信号、进位标志信号、存储器读写信号等。这些信号对于理解微程序控制器输出的控制信号及控制方式至关重要。 课程设计中还强调了微程序流程图绘制的重要性和绘制方法。在微程序设计完毕后,每条微指令需要进行代码化,而微地址通常使用八进制表示。通过这些实验内容的学习和实践,学生不仅能够理解计算机的工作原理和组成,还能够掌握计算机体系结构设计的实践技能。
2025-10-12 09:56:28 990KB 课设报告
1
新高考等级赋分是指在中国大陆地区新高考改革后,对学生在选考科目上的成绩进行等级划分的一种制度。这种制度旨在将原始分数转换为等级,以适应新的高考选考模式。该制度将考生的原始分数划分成不同的等级,每个等级对应一定的百分比区间,例如5个等级或更多,每个等级有不同的赋分区间和比例。本文档提供了详细的Excel操作指导,包括等级赋分的原理、具体的操作步骤、以及制作和优化赋分模板的方法。 在进行等级赋分之前,需要根据《各省市新高考赋分办法》中的比例,将考生分数划分为A、B、C、D、E五个等级或其他数量的等级,并且明确每个等级的总体赋分区间。这个过程需要根据各省份的具体规定来确定每个等级的端点值。例如,在一些省份的规则中,A等级的赋分区间可能会占到学生总数的17%,而E等级可能占到2%。 在实际操作中,需要使用Excel公式来处理考生的分数。例如,可以使用IF函数来判断分数是否为零,然后根据等级的累积和来确定每个分数所在的等级。在确定了每个分数的等级后,再利用组合公式来计算每个等级中的分数最值(最大值和最小值),从而构成相应的赋分区间。 在具体的等级赋分计算中,会使用到比例公式来将学生的实际分数转换为等级赋分值。转换公式需要考虑总体等级赋分区间以及学科等级赋分区间,以及学生的实际分数所在区间。会通过一系列的条件判断公式来赋予学生相应的等级,并显示出每个学生等级、人数以及学科名次等信息。 具体设计步骤包括新建Excel文档,并插入多个工作表,分别进行重命名和数据输入。例如,创建“学生成绩原始分输入模板”工作表,输入学生原始成绩,并在“学生成绩赋分输出”工作表中输入相对应的栏目,并链接原始分模板中的数据。此外,还需设置“第一公式”和“第二公式”工作表来辅助完成赋分计算和数据链接。 Excel操作内容还涉及使用Lookup、Countif、Rank、Min和Max等函数进行数据处理,这些函数能够帮助实现分数到等级的转换、计算等级的最值以及完成其他相关的统计和赋分任务。 整体而言,新高考等级赋分Excel操作的掌握对于教育工作者来说,不仅可以实现对学生考生成绩的准确赋分和评价,还能够极大地提升学校在新高考改革背景下的教学管理水平。通过本教程的学习,即便是没有计算机背景的教师也能够轻松地制作和优化赋分模板,使之满足学校及上级教育管理部门的需求。
2025-10-11 23:02:54 448KB
1
软件需求文档是软件工程中不可或缺的组成部分,它详细记录了软件项目的业务需求、功能需求、非功能需求、运行环境以及需求跟踪等重要信息。软件需求文档的作用是确保软件开发团队与项目干系人之间对软件产品的目标和约束有共同的理解,同时为软件开发、测试和维护提供明确的指导。 1. 引言部分主要介绍了软件开发的背景、参考资料、假定和约束以及用户的特点。其中,背景部分描述了软件系统的名称、项目任务的提出者、开发者、用户以及软件系统与其他系统或机构的关系。参考资料列举了文档中引用和参考的文件资料,包括计划任务书、合同、上级机关的批文等。假定和约束部分列举了软件开发过程中可能面临的前提条件和限制因素,如经费、期限、设备条件等。用户的特点部分描述了最终用户的基本特征,包括操作人员、维护人员的教育水平和技术专长,这对于软件设计工作的约束至关重要。 2. 功能需求部分详细描述了用户对软件系统高层次的目标要求,包括系统范围、系统体系结构、系统总体流程以及具体的用例分析。系统范围概括了用户对系统、产品高层次的目标要求和应用目标。系统体系结构和系统总体流程则以图形和文字描述了软件系统的总体框架和工作流程。用例分析则通过建立用例模型、描述用例以及功能需求的描述,明确了系统能够提供的功能以及用户如何与这些功能交互。 3. 非功能需求部分聚焦于软件系统性能、数据管理、安全保密性、灵活性及其他专门要求。性能要求包括精度、时间特性要求和输入输出要求。数据管理能力要求涉及数据的存储、检索和处理等。安全保密性要求描述了对数据保护的需求和措施。灵活性要求关注于系统对环境变化的适应能力。其他专门要求则针对特定项目或产品的特殊需求。 4. 运行环境规定了软件系统运行所需的硬件和软件环境,包括设备、支持软件、接口和控制等方面的详细说明。这一部分对于确保软件在预期环境中正常运行至关重要。 5. 需求跟踪则描述了如何对需求进行跟踪管理,包括需求变更的处理流程和审批机制。签批单部分则是需求文档中重要决策的记录,确保每一项决策都经过了适当的审批流程。 6. 文档中的修改历史记录和问题列表提供了需求变更的详细历史和相关问题,为需求文档的版本控制提供了支持。 软件需求文档模板为编写高质量的软件需求文档提供了结构化的框架,有助于规范软件开发流程,提升开发效率和产品质量。通过全面地记录和分析软件需求,能够有效避免需求遗漏和误解,为项目的成功奠定坚实的基础。
2025-10-11 15:18:57 19KB
1
在本文中,我们介绍了MATLAB中的STOI函数原理、参数以及使用方法。通过使用该函数,我们可以测量两个音频信号之间的相似性,从而评估语音信号的质量。在开发程序时,我们可以通过读取wav文件并调用stoi函数来计算STOI值,并将结果输出到命令行窗口 MATLAB 是一种强大的编程环境,尤其在数值计算和信号处理方面有着广泛的应用。STOI(Short-Time Objective Intelligibility)函数是 MATLAB 提供的一个用于评估语音信号质量的工具,尤其适用于噪声环境中语音清晰度的量化分析。这个函数的原理基于人类听觉系统对声音的理解方式,通过计算两个信号之间的加权相关性来衡量它们的相似度。 1. STOI 函数的原理: STOI 函数的工作机制是将语音信号分为一系列短时窗口,通常选择汉明窗以减少信号的边界效应。在每个窗口内,它计算信号的频谱,并应用一个权重掩模来强调对语音识别至关重要的频率成分。接着,通过比较两个信号在这些关键频率上的加权相关性,STOI 算法能够得出一个数值,表示两个信号的相似程度。这个值越接近 1,表明两个信号越相似,语音质量也越高。 2. STOI 函数的参数: - `sig_clean`:代表原始、无失真的语音信号。 - `sig_deg`:代表经过失真或降质处理的语音信号,例如在噪声环境中捕获的信号。 - `fs`:采样率,决定了信号的时间分辨率。 - `win_type`:分析时使用的窗口函数类型,例如汉明窗、矩形窗等,它影响了信号频谱的分析精度。 3. 使用 STOI 函数的步骤: - 使用 `audioread` 函数读取 .wav 格式的语音文件,获取信号和采样率。 - 接着,定义分析窗口的类型,如汉明窗,设置合适的窗口长度(如 30 毫秒)。 - 然后,调用 `stoi` 函数,传入相应的参数,计算 STOI 值。 - 可以将 STOI 值打印到命令行窗口,以便观察和分析。 4. 示例代码: 下面是一个简单的 MATLAB 代码示例,演示了如何读取两个 .wav 文件并计算它们之间的 STOI 值: ```Matlab % 读取干净和降质的语音信号 [sig_clean, fs] = audioread('clean.wav'); [sig_deg, fs] = audioread('degraded.wav'); % 定义汉明窗 win_type = hamming(round(30*fs/1000)); % 计算 STOI 值 stoi_val = stoi(sig_clean, sig_deg, fs, win_type); % 输出结果 fprintf('STOI value = %.2f\n', stoi_val); ``` 这段代码首先读取名为 'clean.wav' 和 'degraded.wav' 的文件,接着使用汉明窗计算 STOI 值,并将结果显示在命令行窗口。 5. 结论: 在 MATLAB 中,STOI 函数提供了一种定量评估语音质量的方法,特别是在噪声抑制和语音增强的算法开发中非常有用。通过理解 STOI 的原理、参数和使用方法,开发者可以更好地评估和优化他们的语音处理算法,从而提高在各种环境下的语音可理解性。
2025-10-11 10:05:48 12KB matlab
1
开关电源EMC传导整改总结 本文旨在总结开关电源EMC传导整改的相关知识点,包括传导干扰测试、差模干扰和共模干扰的概念、EMI原理、测试数据分析和整改对策。 一、传导干扰测试 传导干扰测试是指对开关电源的EMC测试,旨在检测电源中的传导干扰。传导干扰可以分为两类:差模干扰和共模干扰。 二、差模干扰 差模干扰是指存在于L-N线之间的电流,电流从L进入,流过整流二极管正极,再流经负载,通过热地,到整流二极管,再回到N。在这条通路上,有高速开关的大功率器件,有反向恢复时间极短的二极管,这些器件产生的高频干扰,都会从整条回路流过,从而被接收机检测到,导致传导超标。 差模干扰的整改对策: 1. 增大X电容容值 2. 增大共模电感感量,利用其漏感,抑制差模噪声 三、共模干扰 共模干扰是因为大地与设备电缆之间存在寄生电容,高频干扰噪声会通过该寄生电容,在大地与电缆之间产生共模电流,从而导致共模干扰。 共模干扰的整改对策: 1. 加大共模电感感量 2. 调整L-GND,N-GND上的LC滤波器,滤掉共模噪声 3. 主板尽可能接地,减小对地阻抗,从而减小线缆与大地的寄生电容 四、EMI原理 开关电源EMI原理部分:图中CX2001为安规薄膜电容(当电容被击穿或损坏时,表现为开路)其跨在L线与N线之间,当L-N之间的电流,流经负载时,会将高频杂波带到回路当中。此时X电容的作用就是在负载与X电容之间形成一条回路,使的高频分流,在该回路中消耗掉,而不会进入市电,即通过电容的短路交流电让干扰有回路不串到外部。 五、测试数据分析 通过测试数据可以看出,差模干扰和共模干扰的存在都会导致传导超标。因此,在设计和测试过程中,需要对差模干扰和共模干扰进行检测和整改,以确保开关电源的EMC性能。 本文总结了开关电源EMC传导整改的相关知识点,包括传导干扰测试、差模干扰和共模干扰的概念、EMI原理、测试数据分析和整改对策,为开关电源设计和测试提供了有价值的参考。
2025-10-10 18:05:21 74KB
1
小麦病害检测数据集VOC+YOLO格式1882张4类别.docx
2025-10-10 15:39:34 2.64MB 数据集
1
人工智能-实验指导书.docx
2025-10-09 19:36:59 1.42MB
1
SEQ Analyst(全称为Service & Experience Quality Analyst)作为客户体验管理使能平台,以数据分析存储平台和NetProbe被动探针为核心,可集成华为和第三方多种数据源,关联运营商网络中从无线、传输、核心网到应用等端到端数据,运用大数据分析方法进行高效业务质量与网络性能管理,快速处理客户投诉,支撑基于客户体验的精准营销和实时营销。针对客户不同职能部门,SEQ Analyst可以做到:  支撑NOC部门做网络质量的监控、分析和定界;  支撑SOC中心做业务质量监控、分析和定界;  支撑客户关怀部门提前、主动发现并分析保障客户体验,快速处理客户投诉;  支撑市场部门做用户细分,机会点发掘,营销活动决策和优化。 SEQ Analyst(服务与体验质量分析师)是华为提供的一款强大的客户体验管理平台,旨在通过数据分析和网络性能管理,提升服务质量,优化用户体验。该平台基于数据分析存储平台和NetProbe被动探针,能够整合华为以及第三方的数据源,实现从无线、传输、核心网到应用的端到端数据关联。SEQ Analyst不仅有助于快速解决客户投诉,还能支持基于客户体验的精准营销和实时营销策略。 1. SEQ Analyst 平台概述 SEQ Analyst的核心功能在于网络质量监控、业务质量分析和定界。它为不同部门提供定制化的解决方案: - 对于NOC(网络操作中心)部门,平台可以帮助监测网络质量,进行问题分析和定位。 - 对于SOC(安全运营中心),它可以监控业务质量,同样进行分析和定界工作。 - 对于客户关怀部门,SEQ Analyst能提前识别潜在问题,主动保障客户体验,并迅速响应投诉。 - 市场部门则可以利用此平台进行用户细分,挖掘市场机会,优化营销策略和活动。 1.1 SEQ Analyst 优势 SEQ Analyst的主要优势在于其大数据分析能力,能够高效处理大量数据,快速定位问题,提供详尽的业务和网络性能报告。此外,它的兼容性强大,支持多种数据源集成,使得跨系统、跨平台的问题分析成为可能。 1.3 解决方案的定位 SEQ Analyst定位为一个全面的客户体验管理工具,它通过集成网络数据,提供深入的业务洞察,帮助运营商提升客户满意度,增强竞争力。 2. 平台登陆 登陆SEQ Analyst平台需要访问特定的URL,同时推荐使用兼容的浏览器和插件,确保所有功能的正常运行。在使用过程中需要注意一些安全和性能相关的事项。 3. VOLTE百日会战关键指标提取和分析 对于VOLTE(Voice over LTE)服务,SEQ Analyst能够详细分析七项关键业务指标,包括注册、接入、切换和掉话等。各项业务专题分析有助于深入理解VOLTE服务中的性能瓶颈和问题,从而进行有针对性的优化。 3.2.1 注册专题分析 此部分关注用户的注册过程,分析注册成功率和失败原因,帮助改善用户的登录体验。 3.2.2 接入专题分析 接入专题分析关注用户接入网络的成功率和速度,帮助识别并解决网络拥堵或连接延迟的问题。 3.2.3 切换专题分析 切换专题分析关注VOLTE用户在不同网络间的切换质量,确保通话连续性和稳定性。 3.2.4 掉话专题分析 掉话分析追踪并识别导致通话中断的因素,以降低掉话率,提高通话质量。 3.3 多维数据查询的使用 平台支持多维度的数据查询,以便用户根据不同的业务需求获取定制化报告。 4. VIP保障及投诉处理 SEQ Analyst提供了专门的投诉分析处理模块和用户体验模块,帮助快速定位和解决问题。 4.1 投诉分析处理模块 此模块协助快速响应和处理投诉,通过辅助分析定位技术,可以迅速找到问题根源。 4.1.1 投诉之辅助分析定位 利用数据分析技术,对投诉情况进行深度挖掘,提供精准的故障定位信息。 4.1.2 投诉之CS/PS精准定位分析 针对CS(电路交换)和PS(分组交换)网络的问题,提供精细化的定位分析,确保问题得到有效解决。 4.2 客户体验模块 这个模块聚焦于提升用户体验,通过对客户行为数据的监控和分析,主动预防可能影响体验的问题,实现客户关怀的前移。 华为的SEQ Analyst平台是一个全面的网络和服务质量管理工具,通过强大的数据分析能力,为运营商提供了一套完整的解决方案,涵盖了网络监控、业务分析、投诉处理等多个方面,以提升整体客户满意度和业务效率。
2025-10-09 12:01:12 7.54MB
1
内容概要:本文介绍了双绞线的制作与测试方法。通过了解双绞线的工作原理及其分类、RJ-45连接器的标准和线序排列标准等,读者可以学习到如何制作直通线、交叉线和全反线,并利用测线仪测试线缆是否正常连接以及判断线序错误或短路断路等问题。实验环境需要准备必要的工具,如RJ-45水晶头、双绞线、压线钳和双绞线测试仪。 适用人群:适合计算机网络技术相关专业学生或技术人员,尤其是初学者。 使用场景及目标:帮助初学者理解并实践双绞线的基本知识和技术,学会正确使用工具制作符合要求的线缆,熟悉常见故障诊断的方法。 其他说明:文中强调了一些重要的操作细节,比如剥离双绞线外皮时要注意不要损伤里面的铜线,保证线序正确无误,并推荐使用T568B标准制作直通线。此外,实验不仅加强了学生的动手能力和解决问题的能力,还加深了他们对网络基础知识的理解。
2025-10-08 11:20:27 714KB 网络工程 网络连接 RJ-45
1
校园安防监控设计方案 校园安全防范监控系统 1.前 言 1 2.保安监控系统设计 2 3.功能介绍 5 4.设计依据 7 5.保安监控系统设计方案 8 6.产品选型 10 7.施工要求: 17 8.人员培训及售后服务 18 校园安全防范监控系统 1.前 言 本文件是我公司为深圳XX学校设计的校园安全防范监控系统所做的技术性文件。 校园安全防范监控系统应是一套能够适应未来发展需要的智能系统,必须能够在功能及应用模式上进行有效的扩展以适应校园治安、人流控制、有效保障学生人身安全及校园财产安全等要求的需求。我公司所提供的智能监控系统就是您选择的解决方案。基于模块化系统结构,本系统的解决方案采用突破性的新技术,成功的集成了当今最为流行的高级智能监控系统,紧紧跟上信息时代的潮流。 我公司按照该工程的实际情况,选择高性能价格比的产品为深圳XX学校量身定做一套样园安全防范监控系统方案。整套系统以公安部现有标准为依据,融合了国外最新的高科技技术于一身,充分满足解决校园监控系统中的综合监控问题,为实现未来智能化,虚拟化管理保驾护航。 校园安防监控设计方案全文共18页,当前为第1页。根据工程的具体情况和甲方提供基本要求,本方案共计设置红外一体摄像机66个,可控128变焦摄像机12部作来前端摄像点分布,采用先进的共缆一线通传输方案来完成78个摄像点在5条视频线上传输到学校监控中心,中心内采用1台大型矩阵、电视墙及5台16路的嵌入式硬盘录像机实现实时观看、控制、录像、回放等功能,是一套完备的校园监控方案。 校园安防监控设计方案全文共18页,当前为第1页。 1. 保安监控系统设计说明 为了切实保障校园内的人身、财产安全、有必要设立一套完善的保安监控系统对现场内及外围进行全方位的监视。 保安监控系统通过全矩阵切换式中央控制主机,其它各系统控制主机,各种摄像机、监视器等设备组成一个立体的监控网,对场地实行分区、时时重要部位全天候监控。 主要能够实现以下系统功能: 对监控现场及附近的环境的动态变化进行实时监测,以达到及时发现和消除不安全隐患的目的,并通过在出现危险情况时的实时录像,来为消除危害后的惩罚犯罪提供有力的证据。 通过控制主机的时间程序操作,对监控现场部分区域部位实行动态监控,可减少设备不必要的运行,亦可达到节省硬盘空间的目的。 提供防范性保养,通过自动累积设备运行时间来开列保养清单,对可能发生的设备问题做出事先维修。 提高XX学校安保科对监控现场管理效率,节省人力和时间。 系统选型高起点: 技术先进性:选用国内、国际最新的专业厂家产品 系统高可靠性:系统的硬件和软件均采用技术成熟的产品 技术支持能力强:承建单位技术实力强,服务完善 建设时间短:在较短的时间内完成系统的安装调试 合理性:这是系统设计的基本原则,主要考虑在现场与外界相通的出入口,外围,人员流动大区域等重要场所安装摄像机。力争做到无死角又不浪费摄像机,使系统的设计合理并达到最优。 实用性:从性能价格比的角度考虑,系统的关键部分全面采用国内、外知名厂家的产品,国内较完善的技术可以采用国产品牌。保证了整个系统的可靠性。同时兼顾到功能的完善和操作简单化的要求,使本系统达到处理意外情况时反应迅速、正确、提高了保安工作的效率。 模块化设计:本套矩阵系统的模块化设计便于将来系统的升级和扩展,即使在将来扩展时,也不需要替换现有设备,而只需软件升级或添加硬件,从而保证了系统的延续性。 当今社会是信息的社会,随着生产力的飞速蓬勃发展,带动了保安环境的要求也越来越高,以满足不同的功能需要。如果保安系统出现问题,必然影响整个服务体制的运行,影响正常工作;尤其是当发生严重事故时,会造成各种不安全因素。因此,为了保证校园监控系统安全可靠的工作,对各教学楼、主要进出口、人流活动场所进行智能监控、集中维护和有机管理是极其必要的。 a. 保安监控系统实现的主要功能: (1)与报警分系统联网,发生报警触发录像,用于取证。 (2)在中控室可以切换看到所有的图像。 (3)系统设有时间、日期、地点、摄像机编号提示,可在录像带上做标记,便于分析和处理。 校园安防监控设计方案全文共18页,当前为第2页。(4)系统可任意选择某个指定的摄像区域,便于重点监视或在某个范围内对多个摄像机区域做自动巡回显示。 校园安防监控设计方案全文共18页,当前为第2页。 (5)矩阵系统具有分组同步切换的功能,可将系统全部或部分摄像机分为若干个组,每组摄像机图像可以同时切换到一组监示器上。 (6)在配置系统时,可以决定每个使用者有权进入系统的哪个部分:使用者可观看哪些摄像机;又能控制哪些摄像机;使用者可以用自己的键盘手动操作哪些继电器(连结到外围),操作哪些VCR和多画面分割器。 2. 一线通传输系统介绍 布点与布线图示意 根据上述的布线图,画出拓朴图
2025-10-05 17:45:55 93KB 文档资料
1