数学建模期末作业-机场出租车问题.docx

上传者: m0_68744965 | 上传时间: 2025-05-19 22:11:06 | 文件大小: 1.06MB | 文件类型: DOCX
摘要: 本论文主要探讨了机场出租车管理的问题,旨在通过数学建模的方法提出解决方案。作业由三位学生完成,属于信息与计算科学专业的课程作业,由教师戴红兵指导。论文涉及三个具体问题,分别是出租车司机的接客决策、机场出租车调度优化以及乘客等待时间的减少。在模型构建过程中,运用了决策树模型,并结合MATLAB软件进行求解。 一、问题重述: 问题一关注的是出租车司机如何根据当前情况决定是否接受乘客。问题二涉及机场出租车调度的优化策略,以提高出租车利用率和乘客服务效率。问题三旨在降低乘客在机场的等待时间,提高乘客满意度。 二、问题分析: 2.1 问题一的分析: 出租车司机接客决策是一个复杂的过程,需考虑当前载客量、目的地、行驶时间等因素。通过构建决策树模型,可以将这些因素量化,帮助司机做出最优选择。 2.2 问题二的分析: 机场出租车调度优化可能包括合理分配出租车到不同的接送区、预测需求波动以及调整出租车进入机场的频率。数学模型可以模拟这些变量,以最小化空驶率和乘客等待时间。 2.3 问题三的分析: 降低乘客等待时间可能需要改进出租车调度系统,例如引入预约系统、实时更新出租车位置信息等。这需要深入研究乘客流量模式并制定相应策略。 三、符号说明: 论文中可能涉及到的符号包括但不限于:N(出租车总数)、D(乘客需求量)、T(出租车平均服务时间)、W(乘客平均等待时间)、P(乘客满意度评分)、R(司机收益)、Q(出租车利用率)等。 四、模型的建立与求解: 4.1 问题一模型的建立与求解: 模型基于决策树理论,通过四个层次分析:判断结果层(Z),收益值决策层,收益影响层,时间影响层。利用MATLAB进行模拟计算,以确定最佳接客策略。 4.1.1.1 出租车司机接客决策树模型第一层判断结果层(Z):此层确定了决策树的最终结果,即司机是否接受乘客。 4.1.1.2 出租车司机接客决策树模型第二层收益值决策层:计算不同决策的预期收益,如乘客支付的费用、油费和时间成本。 4.1.1.3 出租车司机接客决策树模型第三层收益影响层:进一步细化收益影响因素,如距离、乘客数量等。 4.1.1.4 出租车司机接客决策树模型第四层时间影响层:考虑时间成本,如拥堵、返回机场的时间等。 4.1.2 问题一模型的求解:通过MATLAB编程实现决策树模型,进行模拟计算,得出最优策略。 4.2 问题二的建立与求解: 对于问题二,可能需要构建线性规划模型或动态调度模型,通过调整参数来优化出租车调度,实现车辆和乘客的最佳匹配。 4.2.1 问题二模型的建立与求解:同样利用MATLAB,结合实际数据,解决出租车调度的优化问题。 综上,该数学建模作业通过对机场出租车问题的深入分析和模型构建,为解决实际运营中的问题提供了理论支持和求解方法。借助MATLAB等工具,可以实现模型的数值求解,为实际操作提供参考。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明