SAN SAN库 这是进行的代码版本 caffe版本位于目录“ caffe”中。 代码的详细信息在“ caffe”目录中的README.md中进行了描述。 注意,本文中SAN的性能是通过Caffe框架的代码实现的。 pytorch版本位于目录“ pytorch”中。 我们已经在PyTorch 0.3.1版本上发布了版本测试。 代码的详细信息在“ pytorch”目录中的README.md中进行了描述。 引文 如果您使用此代码进行研究,请考虑引用: @InProceedings{Cao_2018_CVPR, author = {Cao, Zhangjie and Long, Mingsheng and Wang, Jianmin and Jordan, Michael I.}, title = {Partial Transfer Learning Wit
2021-12-08 11:37:14 9.47MB JupyterNotebook
1
基于相似度的神经网络多源迁移学习算法 基于相似度的神经网络多源迁移学习算法 基于相似度的神经网络多源迁移学习算法
2021-12-01 11:00:54 1.49MB ieee论文
1
迁移学习(Transfer learning) 顾名思义就是就是把已学训练好的模型参数迁移到新的模型来帮助新模型训练。考虑到大部分数据或任务是存在相关性的,所以通过迁移学习我们可以将已经学到的模型参数(也可理解为模型学到的知识)通过某种方式来分享给新模型从而加快并优化模型的学习效率不用像大多数网络那样从零学习(starting from scratch,tabula rasa)。
2021-11-29 16:56:57 3.21MB 迁移学习
1
迁移学习CNN图像分类模型 - 花朵图片分类-附件资源
2021-11-28 18:46:31 106B
1
「安全资讯」信息安全_数据安全_Another Look at Some Isogeny Hardness - 安全管理 企业安全 红蓝对抗 技术分析大数据 勒索软件
2021-11-27 18:00:06 2.03MB 漏洞预警 渗透测试 信息安全 迁移学习
着重描述联邦迁移学习参与放之间的协作,安全联邦迁移学习框架,计算损失和梯度的数学细节。着重描述联邦迁移学习参与放之间的协作,安全联邦迁移学习框架,计算损失和梯度的数学细节。
2021-11-24 12:36:35 756KB 联邦迁移学习 分布式计算
1
针对乳腺钼靶图像中良恶性肿块难以诊断的问题,提出一种基于注意力机制与迁移学习的乳腺钼靶肿块分类方法,并用于医学影像中乳腺钼靶肿块的良恶性分类。首先,构建一种新的网络模型,该模型将注意力机制CBAM(Convolutional Block Attention Module)与残差网络ResNet50相结合,用于提高网络对肿块病变特征的提取能力,增强特定语义的特征表示。其次,提出一种新的迁移学习方法,用切片数据集代替传统方法中作为迁移学习源域的ImageNet,完成局部肿块切片到全局乳腺图片的领域自适应学习,可用于提升网络对细节病理特征的感知能力。实验结果表明,所提方法在局部乳腺肿块切片数据集和全局乳腺钼靶数据集上的AUC(Area Under Receiver Operating Characteristics Curve)分别达到0.8607和0.8081。结果证实本文分类方法的有效性。
2021-11-20 20:46:12 4.65MB 图像处理 乳腺钼靶 卷积神经 注意力机
1
变分自编码器 (VAE) + 迁移学习 (ResNet + VAE) 该存储库在 PyTorch 中实现了 VAE,使用预训练的 ResNet 模型作为其编码器,使用转置卷积网络作为解码器。 数据集 1. MNIST 数据库包含 60,000 张训练图像和 10,000 张测试图像。 每个图像均保存为28x28矩阵。 2. CIFAR10 数据集包含10个类别的60000个32x32彩色图像,每个类别6000个图像。 3. Olivetti 人脸数据集 脸数据集由 40 个不同主题的 10 张 64x64 图像组成。 模型 模型包含一对编码器和解码器。 编码器 将 2D 图像x压缩为较低维度空间中的向量z ,该空间通常称为潜在空间,而解码器 接收潜在空间中的向量,并在与编码器输入相同的空间中输出对象。 训练目标是让encoder和decoder的组合“尽可能接近identity”。
2021-11-19 02:51:19 10.88MB vae resnet transfer-learning variational-autoencoder
1
中国是传统的农业大国, 农业不仅是国民经济建设与发展的基础, 也是社会正常稳定有序运行的保障. 然而每年由于农作物病虫害造成的损失巨大, 且传统的农作物病虫害识别方法效果并不理想. 同时近年深度学习飞速发展, 在图像分类与识别的方面取得了巨大进展. 因此本文通过基于深度学习的方法构建农作物病虫害图像识别模型, 并针对样本不平衡问题改进卷积网络损失函数. 实验证明该模型可以对农作物病虫害进行有效识别并且对损失函数进行优化后模型的准确率也进一步得到了提升.
1
转移学习 基于实例的迁移学习,TrAdaboost,mutisource-trAdaBoost重新定义
2021-11-17 20:32:02 26KB Python
1