人工智能-深度学习-tensorflow
2024-07-05 11:20:07 2KB 人工智能 深度学习 tensorflow
1
VAE模型以及利用MINIST训练生成数字(效果较好)
2024-06-04 01:17:14 65.42MB
1
超级漂亮的二次元模型 擅长二次元女性创作 适合对AI绘图感兴趣的小白 下载stable-diffusion-webui或者novelai-webui后 把ckpt模型放在models\Stable-diffusion\下 把vae模型放在models\VAE\下 把embedding模型放在\embeddings\下 把lora模型放在 \extensions\sd-webui-additional-networks\models\lora\下
2024-05-08 10:43:51 703B 人工智能
1
解开变分自编码器 PyTorch 实现的论文 团队成员: 安德烈亚斯·斯帕诺普洛斯 ( ) Demetrios Konstantinidis ( ) 存储库结构 目录包含我们迄今为止创建的模型。 一路上还会有更多。 python脚本是主要的可执行文件。 目录包含可用于训练和测试的 colab notebook。 在目录中有一个 ,其中详细解释了变分自动编码器的基本数学概念。 在目录中有一些配置文件可用于创建模型。 在目录中有我们通过使用各种配置运行模型得到的结果。 楷模 目前支持两种模型,一个简单的变分自动编码器和一个解开版本 (beta-VAE)。 模型实现可以在目录中找到。 这些模型是使用PyTorch Lightning开发的。 变分自编码器 变分自编码器是一个生成模型。 它的目标是学习数据集的分布,然后从相同的分布中生成新的(看不见的)数据点。 在下图中,我们可
1
VQ-VAE 这是VQ-VAE的轻量级(200 loc)实现。 用于减少计算到嵌入距离所需的内存。 引入了一个敏感度术语,以使所有嵌入都使用。 从距离到嵌入的时间减去了一段时间以来未使用的灵敏度。 在找到最小距离之前。 要求 Python 3.6 PyTorch 0.3 张量理解 训练 默认情况下,它在cifar10上训练 python vq-vae-img.py 编辑超级参数,源代码中的路径以在ImageNet上进行训练 我使用跟踪模型学习进度。 默认情况下它是关闭的,使用--lera启用它。 经过40k次迭代(K = 512,D = 128)后的ImageNet重建 执照 麻省理工学院
2023-04-07 20:06:23 58KB Python
1
怎样修改MATLAB现有代码中数据RNN-VAE 混合预测系统。 使用VAE获取与时间相关的系统的潜在状态。 使用RNN(水库计算机)来发展潜伏力。 VAE可转换为预测。 基于通过MATLAB生成的综合数据 VAE基于现有的python jupyter实现。 通过MATLAB更新RNN。 跑步: 运行Generate.m。 这将获得综合数据。 确保数据放置在root\n='..\n/\n..\n/\ndata\n/\nsynth'下,或修改python笔记本中的路径。 运行VAE.ipynb,第一部分。 这将生成模型参数,包括潜在变量。 将logvarout.csv,muout.csv加载到matlab中,或确保它与RNNClimateVae.m文件位于同一文件夹中 运行RNNClimateVAE.m。 这将对潜在变量生成预测。 每次运行的性能可能会有所不同。 如果性能良好,请在if(false)区域中运行最终代码块以保存预测 运行VAE.ipynb,第二部分。 这将从潜在预测中生成输出预测。 VAE.ipynb还有另外两个部分,需要进一步分析。 第三部分改变一个潜在方向,同时保持其他不变,从而了解
2023-04-03 17:26:00 9.47MB 系统开源
1
3DConv_VAE
2023-03-26 21:55:09 89.89MB JupyterNotebook
1
用于图像生成的可变自动编码器 该存储库演示了如何将VAE训练到CIFAR10数据集,以及如何使用自动编码器生成新图像。 该存储库使用Colab作为培训环境,并使用Google Drive作为数据和模型文件的持久存储。
2022-12-31 00:12:39 151KB JupyterNotebook
1
可变自动编码器 文章中的器模型的实现。 模型在MNIST数据上进行了测试。 生成数字的示例 要求 张量流> 2 麻木 matplotlib
2022-12-21 19:56:47 42KB vae variational-autoencoder tensorflow2 Python
1
1.自编码器简介,包括(1.1什么是自编码器,1.2自编码器有什么用,1.3怎样构建自编码器,1.4自编码器及其变体) 2.稀疏自编码器(SAE),包括(2.1为什么要有稀疏自编码器,2.2稀疏自编码器介绍,2.3稀疏自编码器原理,2.4与自编码器的区别) 3.收缩自编码器(CAE),包括(3.1 预备知识,3.2 CAE目标,3.3 CAE构造) 4.去噪自编码器(DAE),包括(4.1什么是去噪自编码器,4.2去噪自编码器的结构) 5.变分自编码器(VAE),包括(5.1为什么用变分自编码器,5.2变分自编码器的结构)
2022-11-22 20:26:23 5.22MB Auto-encoding 深度学习 人工智能
1