这是一本有关人工神经网络及其应用的最新书籍,向对这种不断发展的机器学习技术感兴趣的读者提供了该领域的最新进展。
2022-01-16 16:28:37 138B 计算机科学
1
求解二次规划问题的快速收敛梯度神经网络模型设计及仿真.pdf
道路交通事故是道路交通安全水平的具体体现,为使预测数据更科学地为交通管理系统提供决策。提出建立基于LSTM(Long Short-Term Memory)神经网络的交通事故模型,训练交通事故相关的数据,对交通安全水平的指标进行预测。经过与传统回归模型和传统神经网络模型进行实验对比,实验显示LSTM拟合效果最佳,另外LSTM模型对同一趋势上的预测效果有明显优势。通过使用LSTM模型捕获数据中存在的时序依赖关系,能够更准确地对交通事故安全水平进行预测,使交通管理部门制定更加科学准确的决策。
2022-01-07 23:13:43 995KB 论文研究
1
一元线性回归与线性神经网络模型关联性分析,杨达,王会进,一元线性回归和线性神经网络模型在实际应用中都能进行预测,两者都是线性模型。为了探讨两者之间的关联,从两模型的具体学习出发
2022-01-05 14:40:09 370KB 神经网络
1
人工智能,rnn,股票,因子,华泰人工智能系列之九-人工智能选股之循环神经网络模型.,华泰人工智能系列之九-人工智能选股之循环神经网络模型.
2021-12-29 10:38:13 1.78MB 人工智能
1
cnn垃圾分类的神经网络模型
2021-12-24 12:08:02 81.42MB cnn
1
由于神经网络很容易实现从输入空间到输出空间的非线性映射,因此,神经网络应用者往往未考虑输入变量和输出变量之间的相关性,直接用神经网络来实现输入变量与输出变量之间的黑箱建模,致使模型中常存在冗余变量,并造成模型可靠性和鲁棒性差。提出一种透明化神经网络黑箱特性的方法,并用它剔除模型中的冗余变量。该方法首先利用神经网络释义图可视化网络;再利用连接权法计算神经网络输入变量的相对贡献率,判断其对输出变量的重要性;最后利用改进的随机化测验对连接权和输入变量贡献率进行显着性检验,修剪模型,并以综合贡献度和相对贡献率均不显着的输入变量的交集为依据,剔除冗余变量,实现NN模型透明化及变量选择。实验结果表明,该方法增加了模型的透明度,选择出了最佳输入变量,剔除了冗余输入变量,提高了模型的可靠性和鲁棒性。因此,该研究为神经网络模型的透明化及变量约简提供了一种新的方法。
1
零生产 不建议按如下所示部署生产模型。 这只是一个快速入门的端到端示例。 本指南向您展示如何: 建立一个可预测纽约市Airbnb价格的深度神经网络(使用scikit-learn和Keras) 建立一个REST API,根据模型预测价格(使用Flask和gunicorn) 在Google App Engine上将模型部署到生产环境 快速开始 要求: Python 3.7 Google Cloud Engine帐户 克隆此存储库: git clone git@github.com:curiousily/End-to-End-Machine-Learning-with-Keras.gi
1
语音情感分析器:神经网络模型能够从音频语音中检测出五种不同的男女情感。 (深度学习,NLP,Python)
1