28 部电影-超 70 万 用户-超 200 万条 评分评论 想看数据建议用notepad++打开 用于分析类型 推荐系统 情感/观点/评论 倾向性分析 豆瓣电影
1
电影数据集数据可视化分析 电影数据集数据可视化分析 ⼀、数据描述 1.1、数据集描述 movies数据框包含45456⾏,有共10列,有adult,belongs_to_collection,budget,genres,homepage等24个,对应每个电影的的⼀些特 征。 type:类型 director:导演 country:国家 keyword:关键字 score:评分 belongs_to_collection:归属 popularity:声望 revenue:收⼊ vote_average:平均投票 vote_count:投票数 1.2、数据展⽰ 1.3、项⽬操作流程 1.4、导⼊数据 ⼆、问题提出 (1)不同国家电影产量是否存在差异?若有,电影产量最⼤的是哪个国家,占多少份额? (2)哪些国家制作的电影在平均⽔平上更倾向获得观众的⾼评分? (3)电影的类型构成是怎么样的?电影占⽐较⼤的是哪些类型的电影? (4)不同类型电影的评分分布情况,哪些类型的电影更倾向于获得观众好评? 三、数据清洗和预处理 处理完的表格: 四、各变量相关性数据分析与可视化 (1)、不同国家电影产量是否存在差异?若有,电影产量最⼤的是哪个国家,占多少份额?数据显⽰,电影的产地可能不⽌⼀个国家,对于多 产地的电影,对于其中任⼀产地国都不算⼀部严格意义上的电影,所以此项研究的范围仅限于单产地电影的分析。 (2)、哪些国家制作的电影在平均⽔平上更倾向获得观众的⾼评分? (3)、电影的类型构成是怎么样的?电影占⽐较⼤的是哪些类型的电影? 在所有电影中,戏剧电影、喜剧电影、恐怖电影⽐较受制⽚⼈青睐,三种类型的市场份额依次递减。 (4)、不同类型电影的评分分布情况,哪些类型的电影更倾向于获得观众好评? #先获取所有电影类型列表 genres_full_data=pd.Series(list_).value_counts().sort_values(ascending=False) genres_full_data_=pd.DataFrame({"genres":genres_full_data.index ,"num":genres_full_data}).sort_values(by=["genres"]).drop("") 历史⽚、记录⽚、战争⽚的电影类型更倾向于获得观众的好评,其中,对于历史类型的电影,从图形上来说它的箱形较扁,说明这种系列的 电影的得分较为集中,即历史⽚得⾼分得概率较⼤;⽽记录⽚电影的箱形较长,说明这种系列的电影相对于历史⽚⽽⾔,得分较为分散,存 在⾼分电影,也存在得分不怎么⾼的电影,它的中位线更靠近四分之三分位线,⾼分部分的得分⽐低分部分的得分集中⼀些. (5)、电影关键字-词云图 五、主要结论 (1)在电影制作数量上,美国以88%的⽐例排名第⼀; (2)按电影评分平均分:巴基斯坦>阿根廷>爱尔兰; (3)戏剧电影、喜剧电影、恐怖电影⽐较受制⽚⼈青睐; (4)历史⽚、记录⽚、战争⽚的电影类型更倾向于获得观众的好评; (5)演员出演数量上,Samuel L.Jackson主演的电影数量超过60部,排名第⼀; (6)电影制作数量上,Steven Spielberg以27部排名第⼀。 以上就是围绕着关于电影数据集的若⼲问题展开的数据可视化分析全过程,后⾯有其他的分析⽅向,再补充吧。
2023-01-30 17:35:20 87KB 文档资料
1
摘要视图订阅标签: TensorFlow深度学习机学习分类:[置顶] 20行代码实现电影评论情感分析201803月09日 09:33:172339人阅读评论(4
2023-01-30 11:37:13 3.6MB tensorflow python 软件/插件 生活娱乐
1
第1章 前言 1.1 项目开发背景 1.2 项目开发的意义 1.3 主要研究内容 第2章 可行性分析 2.1可行性分析 2.2需求分析 第3章 系统设计 第4章 详细设计与实现 第5章 软件测试 第6章 总结 参考文献 致 谢
1
该资源为综合项目实战_Python数据分析:豆瓣电影分析系统的一个完整项目 ——基于爬虫、Panads、MatplotLib、PyEcharts。 1)资源涵盖了python爬虫,爬虫抓取的内容为豆瓣top250网页数据,使用的库位urlrequest以及BeautifulSoup,以及在爬虫过程中使用了代理池的方式进行。(py文件) 2)资源涵盖了数据清洗,数据查重、数据分析,含电影排名分析,上榜次数统计分析,可视化数据分析maplotLib版,以及电影电影标签热度词云统计-可视化分析,以及可视化数据分析(PyEcharts版)(整理于ipynb文件) 该资源为数据分析师的一个完整进阶项目,包含从数据采集(数据爬虫),数据清洗,数据分析,数据的可视化展示以及数据结论等。适合想学习完整项目以及进阶数据分析师的同学们学习。
2023-01-29 10:34:17 883KB 爬虫 pandas matplotlib pyecharts
毕业设计-电影购票小程序,分为三部分:小程序端、商家(影院)后台与官方后台
2023-01-27 09:13:13 14.66MB 电影购票系统 小程序 微信小程序 源码
1
MovieLens 20m 电影推荐数据集包含 138493位 用户对 27278部 电影的 20000263项 电影的评分(1-5分),电影标签数为 465564个,数据采集自网站 movielens.umn.edu,时间段为 1995.01-2015.03。
2023-01-25 23:06:32 417.67MB 推荐系统 电影推荐 电影评分 电影评价
1
Popular Movies This is an Android app that fetches provides movie data from themoviedb. It was built for educational purposes as part of Udacity's Android Nanodegree Program. Features Implements Content Providers and SQLite Syncs with the REST API in a battery-friendly. Makes use of various libraries for decent UX. Animations, transitions and content-based material color palletes. Constraint Layouts, parallaxing. Screenshots Libraries Used Butterknife - Bind Android views and callbacks
2023-01-13 01:53:38 4.74MB Android代码
1
对于电影《白蛇传·情》的豆瓣短评数据,进行分词、词频统计,并绘制好评与中差评的韦恩词云图,可以清楚地分析好评与中差评间的异同。文件包括:词云图背景、.ipynb代码、豆瓣短评csv文件、结果文件。
2023-01-12 16:18:19 5.89MB 词云图 文本分析 韦恩图
1
购物-电影票 泛娱乐大数据 生活服务-格瓦拉电影 生活服务-猫眼电影
2023-01-10 23:45:07 21.11MB 电影原型 app原型+后台原型
1