由于人体脑血管结构复杂,空间比例小,三维分割和重构十分困难,本文面向时飞磁共振血管造影(TOF MRA)数据提出了一种新的瑞利高斯有限混合模型来实现脑血管的自动提取和分割。首先,对已有的混合模型进行了分析;然后,采用最大强度投影法(MIP)预处理脑部数据后采用高斯分布拟合血管类,采用瑞利分布和高斯分布拟合非血管类。提出的模型构造简单,参数向量较少;在血管与非血管的混合区域,模型与灰度直方图具有较好的拟合性。模型在传统期望最大化(EM)算法中加入随机扰动项构造随机期望最大化(SEM)算法来实现混合模型的参数估计,降低了算法对初值的依赖,同时提高了鲁棒性。实验证明,与已有双高斯模型相比,血管点数增加了27%,可细分到三级血管且细节的连通性更好。本模型可更准确地拟合数据的灰度分布曲线,有效地分割脑血管主分支及周围较细小分支,泛化性较好并可应用于相似系统中。
1
基于特征分析的访问控制混合模型设计与实现 安全架构渗透测试 业务安全 企业安全 APT
2021-09-10 09:00:05 3.08MB 安全开发 安全威胁 安全防护 安全运营
经过改进的高斯混合模型,运行效果还是可以的,适用于想深入了解混合高斯模型前景的同学,代码书写比较规范
2021-09-07 10:14:49 4KB 高斯混合 前景提取 自适应
1
行业分类-设备装置-基于t分布混合模型的网络多媒体业务半监督分类方法.zip
2021-08-31 18:05:38 549KB 行业分类-设备装置-基于t分布混
行业-电子政务-基于小波分析和有限高斯混合模型EM方法的模拟电路故障诊断方法.zip
Purdue大学一个教授写的高斯混合模型的库,附带有我封装的接口(GMM.c),以及作者的使用手册PDF
2021-08-30 16:03:33 228KB GMM 高斯混合模型 源码
1
VB-GMM 高斯混合模型的变分贝叶斯模型选择。
2021-08-29 14:39:50 12KB C
1
一种基于高斯混合模型的无监督粗糙聚类方法.pdf
2021-08-21 13:03:55 282KB 聚类 算法 数据结构 参考文献
一种快速、鲁棒的有限高斯混合模型聚类算法.pdf
2021-08-21 09:37:51 379KB 聚类 算法 数据结构 参考文献
组织病理学-染色颜色归一化 深度卷积高斯混合模型,用于组织病理学H&E图像中的污点色归一化。 TensorFlow GPU实施。 概述 污点颜色变化会降低计算机辅助诊断(CAD)系统的性能。 在组织病理学图像中的训练集和测试集之间存在严重的颜色差异的情况下,包括深度学习模型在内的当前CAD系统会遭受这种不良影响。 污点色归一化被称为补救措施。 方法 可以将色标归一化模型定义为一种生成模型,该模型可以通过在输入图像上应用以创建输入图像的不同颜色副本,从而以某种方式将转换后的图像包含特定的色度分布。 我们提出的方法包括两个阶段:(1)通过考虑图像内容结构的形状和外观来拟合高斯混合模型(GMM)。 为此,利用了卷积神经网络(CNN)的可视化表示和建模。 (2)将估计的分布转换为从次要(模板)图像计算出的任意分布。 特征 完全不受监督的端到端学习算法 归一化图像中色彩恒定性的最佳性能 缺少关于图像
2021-08-20 16:15:16 25.51MB Python
1