1.mnist数据集:整个数据集由来自 250 个不同人手写的数字构成,其中 50%是高中学生, 50% 来自人口普查局的工作人员。训练集:60000,测试集:10000
2.imdb数据集:这数据集包含了50000条偏向明显的评论,其中25000条作为训练集,25000作为测试集。label为pos(positive)和neg(negative)。
3.boston_housing数据集:数据来自1970年代,波斯顿周边地区的房价,是用于机器学习的经典数据集。该数据集很小,共计506条数据,分为404个训练样本和102个测试样本。
4.cifar-10数据集:CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像。
数据集分为五个训练批次和一个测试批次,每个批次有10000个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。训练批次以随机顺序包含剩余图像,但一些训练批次可能包含来自一个类别的图像比另一个更多。总体来说,五个训练集之和包含来自每个类的正好5000张图像。
1