OpenSceneGraph (OSG) 是一个强大的开源图形库,广泛应用于实时三维图形渲染,包括虚拟现实(VR)和增强现实(AR)应用。在OSG中,支持多种立体视觉显示方式,以模拟人类双眼观察物体时产生的深度感知,从而创建三维效果。以下将详细介绍文档中提到的几种立体显示技术及其在OSG中的实现方法。 1. **垂直方向分割 (Vertical Split)**:这是通过在屏幕垂直方向上将画面一分为二,分别显示左眼和右眼的视图。在OSG中,可以使用`osg::DisplaySettings::instance()->setStereoMode(osg::DisplaySettings::VERTICAL_SPLIT);`来设置立体模式,并通过`osg::DisplaySettings::instance()->setStereo(true);`开启立体显示。调整双眼之间的距离,可以通过设置`setEyeSeparation()`函数,参数值越大,图像对称性越小,更接近实际人眼的视角差异。 2. **水平方向分割 (Horizontal Split)**:与垂直分割类似,但分割线沿屏幕的水平方向。在OSG中,虽未直接列出对应的常量,但可以实现此功能,通过自定义渲染策略进行左右眼图像的分离。 3. **色差立体 (Anaglyphic)**:这种方法使用红色和蓝色(或绿色)滤镜,每个滤镜对应一只眼睛,通过颜色差异实现立体效果。在OSG中,可通过特定的渲染节点或后处理效果实现色差立体。 4. **水平交错 (Horizontal Interlace)**:在每帧中交替显示左右眼的图像,通常用于电视和投影仪等设备。OSG中的实现可能需要自定义渲染管道,以确保正确地交错显示。 5. **垂直交错 (Vertical Interlace)**:类似于水平交错,但在垂直方向上交错左右眼图像。 6. **棋盘格扫描 (Checkerboard Interlace)**:在屏幕上形成交错的黑白棋盘格,每个黑色或白色的小格子代表一只眼睛的视图。这种方式可以减少像素浪费,提高显示效率,但在实现时需要更复杂的渲染算法。 在实际应用中,选择哪种立体显示方式取决于具体硬件设备的支持、性能需求以及用户舒适度。例如,垂直和水平分割对于头戴式显示器(HMD)比较常见,而色差立体则适合纸质或低成本3D眼镜。每种方式都有其优缺点,开发者需要根据项目需求进行选择和优化。同时,确保在设置立体显示时考虑用户可能的疲劳感,合理调整双眼距离、视差等参数,以提供最佳的观看体验。
2024-09-15 22:15:52 925KB 立体显示
1
红外测温仪的测温原理是将物体(如钢水)发射的红外线具有的辐射能转变成电信号,红外线辐射能的大小与物体(如钢水)本身的温度相对应,根据转变成电信号大小,可以确定物体(如钢水)的温度。红外测温技术已发展到可对有热变化表面进行扫描测温,确定其温度分布图像,迅速检测出隐藏的温差, 这就是红外热像仪。红外热像仪最先应用于军事上,美国TI公司19"年研制出世界上第一台红外扫描侦察系统。以后,红外热成像技术在西方国家陆续用于飞机、坦克、军舰和其他武器上,作为侦察目标的热瞄系统,大大提高了搜索、命中目标的能力。瑞典AGA公司生产的红外热像仪在民用技术上处于领先地位。但是,怎样使红外测温技术得到广泛应用,目前仍
2024-09-15 21:02:15 103KB 电子测量
1
PCS 7 中 PC 站的创建、组态和下载 PCS 7 提供了两种方式创建 PC 站:项目向导和手动创建。项目向导自动创建 PCS 7 组件视图中,右键 > Insert New Object > Preconfigured Station,创建单站系统、多站系统和冗余系统。手动创建 PC 站需要在 PCS 7 组件视图中,右键 > Insert New Object > SIMATIC PC Station,然后打开 Configuration 组态 PC 站组件。 PC 站组态需要配置相应组件,例如 WINCC 组件、ArchiveProcess Historian Appl. 和 Process Historian Appl. 等。根据不同的应用场景,可以选择不同的组件,例如 SPOSA Appl.、WinCC Appl.、WinCC Appl.(Stby) 等。 在 PC 站组态中,需要选择合适的网卡类型。网卡类型的选择取决于 PC 站的应用场景和连接的系统总线和 AS 通讯。如果连接的系统总线和 AS 通讯,需要插入网卡。例如 OS 服务器、OS 单站需要插入网卡,而 OS 客户机、PH 服务器等不需要插入网卡。 在选择网卡类型时,需要考虑到 CP1623/CP1613 的使用。如果连接 AS 数量超过 8 个或者和 400H 冗余通讯时,需要使用 CP1613/CP1623。普通网卡可以用于连接 AS 数量不超过 8 个的情况。所有类型的普通网卡均组态为 IE General。 此外,普通网卡是否支持和 400H 冗余通讯需要满足一定的要求,例如 CPU 必须是 S7-400H V6.0 或者 CPU410H,SIMATIC NET 版本 V8.2 或更高版本,IE General 组态为 SW V8.2…,连接双方都必须启用 IP 地址,授权 SOFTNET-IE S7 REDCONNECT VM V8.2 或更高版本。 在 PC 站组态完成后,需要快速查找网卡 IP/MAC 地址。可以通过 SIMATIC NET 控制台查找 IP/MAC 地址,开始菜单 > Siemens Automation > SIMATIC > SIMATIC NET > Communication Setting(或者 Configuration Console);展开 Modules > 网卡。
2024-09-14 17:25:35 544KB PCS7
1
在 STEP 7 V11 中,如何编译已经在V 10.5中设置密码保护 的块? http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6539 60418665 手册 /自动化系统/SIMAT IC S7-1200 SIMATIC STEP 7 S7- 1200 运动控制 V11 SP2 http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6543 25296061 软件 /过程仪表及分析仪 器/称重组件/称重模 块 Getting started S7 project for SIWAREX FTA (Step 7 Classic and TIA-Portal) http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=3199 39710145 手册 /自动化系统/SIMAT IC S7-1200 SIMATIC S7-1200 入门手册 http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=3757 F0629 常问问题 /自动化系统/SIMAT IC S7-300 如果FB块被多次调用 ,如何监控单个块的 执行情况? http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6538 59885894 常问问题 /自动化系统/HMI软 件/WinCC (TIA Portal) 在WinCC (TIA Portal)中提供了那些V BS 信息和 VBS编程辅助工具? http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6535 60278839 常问问题 /驱动技术/直流调速 器 在STARTER中 使用Advanced CUD 替代 Standard CUD http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6537 4056 宣传册 /自动化系统 全集成自动化-- 水利和水处理行业 http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=2511 59539754 软件 /自动化系统/HMI软 件/WinCC (TIA Portal) WinCC Runtime Professional V11 SP2 的更新 http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6533 58112587 软件 /自动化系统/HMI软 件/WinCC (TIA Portal) WinCC Runtime Advanced V11 SP2 的更新 http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6384 A0624 操作指南 /工业控制产品/监视 和控制设备/安全继 电器 如何对MSS的中央模 块进行工厂复位? http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6534 A0623 操作指南 /过程控制系统/SIM ATIC PCS7/PCS7入门系 统 Lifebeat monitoring 使用入门 http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6532 A0621 操作指南 /自动化系统/WinC C (脚本、图形、归 档、选件)/SIMATI C WinCC Basic WinCC中定时器使用 方法介绍 http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6525 F0627 常问问题 /驱动技术/MICROM ASTER MM440与MM430拖动 不同电机切换的调试 http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6530 F0628 常问问题 /工业控制产品/监视 和控制设备/安全继 电器 如何更换MSS的硬件 模块? http://www.ad.siemens.com.c n/download/docMessage.asp x?Id=6531
2024-09-14 17:16:08 2.74MB
1
本文简要介绍了全集成自动化控制系统PCS7在山东海化天祥化工厂5万吨/年苯胺装置中的应用,PCS7系统的全集成性和开放性及强大功能在本项目中得到了充分应用,PCS7组态的方便性和多种工具的应用也为控制技术人员的集成、组态和调试带来了很大方便。本文着重介绍了本项目的两个重点:IO冗余和控制网的监控。 西门子PCS7在山东海化苯胺项目中的应用展示了其在化工自动化领域的卓越性能。PCS7是一款全集成自动化控制系统,集成了DCS(分布式控制系统)和FCS(现场总线控制系统)的功能,具备高度的开放性和灵活性。在该项目中,PCS7系统充分利用其全集成特性,将不同单元的操作整合在一个平台上,简化了系统的复杂性,提高了控制效率。 IO冗余是该项目的重点之一。IO冗余确保了输入/输出模块的高可用性,即使某个模块出现故障,系统也能迅速切换到备用模块,避免生产中断。这种冗余设计在苯胺这种危险化学品生产过程中尤为重要,因为它能够最大程度地减少因硬件故障导致的安全风险。 另一个重点是控制网的监控。PCS7系统采用冗余的以太网和Profibus-DP网络,形成了一个稳定的双层网络结构,控制网为环形设计,增强了网络的可靠性。通过监控网络状态,可以及时发现并解决潜在的通信问题,保证数据传输的顺畅,从而确保整个生产过程的稳定运行。 在苯胺装置的生产工艺中,包括硝化、还原、精制、废酸浓缩、废水处理和氢压机等多个单元。每个单元都有特定的反应过程,如硝化单元利用硝酸和苯反应生成硝基苯。为了应对苯胺生产的安全挑战,如易燃易爆性,装置中配置了安全装置,如防爆阀、信号隔离等,并引入了HIMA提供的ESD紧急停车系统,通过Modbus与DCS通讯,进一步提升了安全水平。 控制系统的构成包括西门子400系列冗余控制器,如CPU 417-4H和CPU414-4H,它们共同构成了一个稳定且可扩展的监控系统。冗余的CPU、电源、I/O、网络等组件确保了系统的高可用性和容错能力。此外,PCS7的统一平台使得组态、编程和调试工作更为便捷,降低了技术人员的工作负担。 西门子PCS7在山东海化苯胺项目中的应用体现了其在化工自动化领域的先进性和可靠性,通过全集成自动化方案实现了从生产到管理层面的信息优化,同时保证了关键过程的安全和效率。冗余设计和网络监控策略进一步巩固了系统的稳定性和可扩展性,为类似化工项目的自动化控制提供了有价值的参考。
2024-09-14 17:09:56 134KB 自动控制系统|DCS|FCS
1
磷酸铁锂(LiFePO4)电池因其高安全性和长寿命而被广泛应用于电动车和储能系统。然而,它们的电压平台相对平坦,导致使用传统的电压积分方法对电池状态估计时,其精度相对较低。德克萨斯仪器公司(Texas Instruments,简称TI)开发的阻抗跟踪电池电量计技术通过分析电池的内阻特性来提供对电池状态的精确估计,这种方法尤其适用于磷酸铁锂电池。 阻抗跟踪技术的核心在于通过电池使用时间来确定电池的剩余电量(State of Charge,简称SOC)。其算法利用了电池的阻抗模型,能够对电池容量(Qmax)进行动态跟踪,从而适应电池老化过程中容量的变化。在某些应用场合,例如电动车辆或太阳能储能系统,电池可能很少有机会进行完全放电,这就需要一种更实用的浅放电(Shallow Discharge)Qmax更新方法。 为了实现浅放电下的Qmax更新,需要满足两个条件:需要在电池的不合格电压范围以外进行两个开路电压(OCV)的测量。不合格电压范围是指电池因内阻等原因导致电压测量不准确的区域,一般与电池的化学属性和状态有关。这些范围通常由电池制造商或标准测试方法给出,如表1所示。测量期间电池的通过电荷量必须至少达到其总容量的37%,以便电量计能够准确地进行库仑计数,进而更新Qmax。 在实际操作中,由于磷酸铁锂电池的稳定电压平台,要找到一个狭窄的OCV测量窗口以避免不合格电压范围是非常具有挑战性的。例如,对于化学ID编码为404的电池,其不合格电压范围可能从3274mV到3351mV。因此,设计人员可能需要调整OCV的等待时间,以及电池正常工作温度和最大充电时间等参数,从而在满足特定条件的范围内进行Qmax更新。 此外,为了适应不同容量的电池组,比如从3s2p(两组三串联)配置改变到3s1p配置时,电池组的总容量会减半。为了保持电量计的准确性和适应性,可能需要对数据闪存参数进行微调。这意味着,对于使用较小容量电池组的系统,电量计评估软件中的参数设定可能需要根据实际电池的特性来调整,以便在特定条件下实现最佳性能。 在微调过程中,可能需要考虑多种因素,如电池的放电速率、检测电阻器的精度、SOC与OCV的关联误差等。例如,如果设计人员能够将浅放电更新的不合格电压范围调整得更高,那么就可能利用一个较低误差的中间范围来执行Qmax更新。这样做的好处是能够提高SOC更新的准确度,但同时也增加了对电池状态监控系统的复杂度。 最终,为了提高电量计在不同操作条件下的适应性,TI提供了对电量计的软件进行微调的能力。这使得设计人员可以根据特定应用场合的需求来调整电量计的参数,从而达到最佳的性能。然而,这种微调需要对电池化学特性、电量计工作原理以及电池管理系统有深入的理解。因此,这通常需要电池制造商或系统设计人员与电量计的制造商紧密合作,确保电量计能够适应并准确地监测磷酸铁锂电池的SOC。
2024-09-14 13:53:30 210KB 电池|模块
1
本案例属于热-结构耦合场分析问题,也属于旋转摩擦生热问题,选用耦合场三维六面体二十节点SOLID226单元进行分析,将角速度转换为切向位移载荷施加在铜块上。
2024-09-13 10:26:38 3KB ansysAPDL 摩擦生热 有限元仿真
1
【JavaWeb教程详解】 JavaWeb开发是Java编程领域的一个重要分支,主要涉及构建基于Web的交互式应用程序。尚硅谷推出的全新JavaWeb教程聚焦于企业主流技术栈,旨在帮助开发者掌握实际工作中所需的关键技能。本教程涵盖了Tomcat服务器、Servlet等核心组件的使用,并在IntelliJ IDEA(一款强大的Java开发集成环境)上进行实践操作,教你如何通过Tomcat构建Web应用。 一、Tomcat服务器 Tomcat是Apache软件基金会的Jakarta项目中的一个核心项目,是一个开源的、轻量级的Java Web应用服务器,广泛用于部署Servlet和JSP应用。在本教程中,你将学习如何配置和管理Tomcat,包括安装、启动、停止以及部署Web应用到Tomcat服务器的过程。了解Tomcat的工作原理和目录结构,对于理解和调试Web应用至关重要。 二、Servlet Servlet是Java提供的一种服务器端的Java API,用于处理HTTP请求和响应。在JavaWeb开发中,Servlet扮演着接收请求、处理业务逻辑并生成响应的关键角色。本教程将深入讲解Servlet生命周期、Servlet API的使用、Servlet配置以及Servlet的多线程处理。通过实践,你将学会创建和注册Servlet,实现动态网页功能。 三、IDEA集成开发环境 IntelliJ IDEA是许多Java开发者首选的集成开发环境,它提供了丰富的代码自动补全、重构工具以及对各种框架的优秀支持。在本教程中,你将学习如何设置IDEA以适应JavaWeb开发,包括创建新项目、导入Tomcat服务器、配置Web应用和运行调试等步骤。掌握IDEA的使用能极大提高开发效率。 四、实战项目构建 教程中的“web-all”可能指的是整个Web应用的源代码包,包含了所有相关的Java类、配置文件、HTML、CSS和JavaScript等资源。通过这个项目,你可以亲自动手实践,从零开始构建一个完整的JavaWeb应用,涵盖从需求分析到编码、测试和部署的全过程。 五、其他相关技术 除了Tomcat和Servlet,企业级的JavaWeb开发还涉及到JSP(JavaServer Pages)、MVC设计模式、JDBC数据库访问、Spring框架、MyBatis等。虽然这些内容可能没有在标题和描述中明确提及,但作为JavaWeb开发的重要组成部分,理解它们是进阶学习的必要步骤。 总结来说,尚硅谷的JavaWeb教程是一套全面的学习资源,涵盖了从基础到进阶的企业级开发技能。通过学习,你不仅可以掌握JavaWeb开发的核心技术,还能了解实际项目中的最佳实践,为成为一名合格的JavaWeb开发者打下坚实基础。
2024-09-12 16:09:04 3.54MB java 课程资源
1
**FOC控制技术详解** **1. FOC(Field-Oriented Control)的本质与核心思想** FOC(Field-Oriented Control)是一种先进的电机控制策略,其核心思想是通过实时控制电机的定子磁场,使其始终与转子磁链保持90度的相位差,以实现最佳的转矩输出。这被称为超前角控制。电机的电角度用于指示转子的位置,以便在固定坐标系和旋转坐标系之间转换磁场,进而生成精确的PWM信号来控制电机。电角度的定义可以灵活,如轴与轴的夹角,主要目的是简化Park和反Park变换的计算。 **2. 超前角控制的原理** 超前角控制的关键在于使电机的磁通与转矩方向垂直,以获得最大的转矩。当转子磁场相对于定子磁场滞后90度时,电机的扭矩最大。因此,通过实时调整定子电流,使它超前于转子磁链90度,可以达到最优的扭矩性能。 **3. Clark变换** Clark变换是将三相交流电流转换为两相直轴(d轴)和交轴(q轴)的直流分量的过程,目的是将复杂的三相系统解耦为易于控制的两相系统。在Clark变换中,通过一定的系数(等幅值变换或恒功率变换)将三相电流转换为两相电流,使得电机的动态特性更易于分析和控制。 **3.1 数学推导** Clark变换的公式如下: \[ I_d = k(I_a - \frac{1}{\sqrt{3}}(I_b + I_c)) \] \[ I_q = k(\frac{1}{\sqrt{3}}(I_a + I_b) - I_c) \] 其中,\(k\) 是变换系数,等幅值变换时 \(k = \frac{1}{\sqrt{3}}\),而恒功率变换时 \(k = \frac{2}{\sqrt{3}}\)。 **4. Park变换与逆变换** Park变换是将两相直轴和交轴电流进一步转换为旋转变压器坐标系(d轴和q轴),以便进行磁场定向。逆Park变换则将旋转变压器坐标系的电流再转换回直轴和交轴电流。这两个变换在数学上涉及到正弦和余弦函数,对于实时控制至关重要。 **5. SVPWM(Space Vector Pulse Width Modulation)** SVPWM是一种高效的PWM调制技术,通过优化电压矢量的分配,实现接近理想正弦波的电机电压。SVPWM涉及到扇区判断、非零矢量和零矢量的作用时间计算、过调制处理以及扇区矢量切换点的确定。这一过程确保了电机高效、低谐波的运行。 **6. PID控制** PID(比例-积分-微分)控制器是自动控制领域常见的反馈控制策略。离散化处理是将连续时间的PID转换为适合数字处理器的形式。PID控制算法包括位置式和增量式两种,各有优缺点,适用于不同的控制场景。积分抗饱和是解决积分环节可能导致的饱和问题,通过各种方法如限幅、积分分离等避免控制器性能恶化。 **7. 磁链圆限制** 磁链圆限制是限制电机磁链的模长,以防止磁饱和现象。通过对MAX_MODULE和START_INDEX的设定,确保电机在安全的工作范围内运行,同时保持良好的控制性能。 以上知识点涵盖了FOC控制的基础理论和实际应用,包括数学推导、算法实现以及相关的控制策略。通过深入理解并实践这些内容,可以有效地设计和优化电机控制系统。
2024-09-12 11:01:38 7.34MB simulink
1
在计算机科学领域,尤其是图像处理和计算机视觉方向,行人检测与跟踪是一项重要的研究课题。它在智能交通、视频监控、安全防护以及人机交互等多个领域都有广泛应用。本课程设计或作业的目标是让学生掌握这一技术的基本原理和实现方法,从而能够实际操作并分析图像中的行人目标。 我们要理解行人检测的概念。行人检测是通过计算机算法自动识别图像或视频流中的人类个体的过程。常见的行人检测方法有Haar特征级联分类器、HOG(Histogram of Oriented Gradients)描述符、以及深度学习模型如YOLO(You Only Look Once)、Faster R-CNN等。这些方法基于不同的特征提取和分类策略,旨在高效且准确地定位图像中的行人。 Haar特征级联分类器是早期的行人检测方法,它利用集成的Adaboost算法训练级联分类器,通过矩形特征来识别行人。而HOG描述符则关注图像中边缘和梯度的方向分布,通过统计这些特征来区分行人与其他物体。 接下来,我们讨论行人跟踪。行人跟踪是在检测到行人后,通过一系列算法确保在连续的帧之间对同一行人的连续追踪。这通常涉及到目标运动模型的建立、状态估计、数据关联等问题。常用的跟踪算法有卡尔曼滤波、粒子滤波、光流法以及基于深度学习的跟踪方法,如DeepSORT、FairMOT等。这些方法各有优劣,适用于不同的场景和需求。 在进行课程设计时,学生可能需要完成以下步骤: 1. 数据收集:获取包含行人的图像或视频数据集,例如PASCAL VOC、INRIA Person等。 2. 特征提取:根据选择的方法,提取图像的Haar特征、HOG特征或使用预训练的深度学习模型。 3. 检测算法实现:训练和测试行人检测模型,评估其在不同条件下的性能。 4. 跟踪算法实现:结合检测结果,实现行人跟踪算法,处理目标丢失和重识别等问题。 5. 实验与分析:对比不同方法的效果,分析优缺点,并提出改进方案。 通过这个课程设计,学生不仅会学习到基本的图像处理和计算机视觉知识,还能了解到如何将理论应用于实际问题,提升编程和问题解决能力。同时,这也为他们进一步深入研究深度学习、人工智能等前沿领域打下基础。
2024-09-11 23:03:27 81KB 课程资源
1