MATLAB代码,直接运行,可以换数据。
2023-04-26 22:49:40 980B matlab lstm 神经网络
1
用于时间序列预测的LSTM.rar
2023-04-20 22:30:56 14KB lstm 用于时间序列预测的LSTM.ra
1
word2vec预训练模型,gensim做的
2023-04-19 20:41:41 267.66MB word2vec 预训练模型 维基百科
1
日志异常检测器 日志异常检测器是一个名为“ Project Scorpio”的开源项目代码。 LAD也简称为LAD。 它可以连接到流媒体源并生成对异常日志行的预测。 在内部,它使用无监督机器学习。 我们结合了许多机器学习模型来实现这一结果。 另外,它在回路反馈系统中还包括一个人。 项目背景 该项目的最初目标是开发一种自动方法,根据用户应用程序日志中包含的信息,在用户的应用程序出现问题时通知用户。 不幸的是,日志中充满了包含警告甚至是可以忽略的错误的消息,因此简单的“查找关键字”方法是不够的。 另外,日志的数量在不断增加,没有人愿意或无法监视所有日志。 简而言之,我们的最初目标是使用自然语言处理工具进行文本编码,并使用机器学习方法进行自动异常检测,以构建一种工具,该工具可以通过突出显示最日志来帮助开发人员针对失败的应用程序更快地执行根本原因分析如果应用程序开始产生高频率的异常日志,则很可能
2023-04-19 10:31:53 12.02MB kubernetes log word2vec machine-learning-algorithms
1
NLP项目实例,实现一个类似于中文输入法中联想的功能;项目利用深度学习框架Pytorch,构建一个LSTM(也支持NGram,TextCNN,LSTM,BiLSTM等)模型,实现一个简易的中文单词预测(词语预测)功能,该功能可以根据用户输入的中文语句,自动预测(补充)词语;基于该项目训练的中文单词预测(词语预测)模型,在自定义的数据集上Top-1准确率最高可以达到91%左右,Top-5准确率最高可以达到97%左右。博文:https://blog.csdn.net/guyuealian/article/details/128582675
2023-04-18 22:22:20 432B 中文单词预测 LSTM NGram TextCNN
1
利用rnn网络和lstm网络进行下一个字的预测 eg: `输入`:**我觉得这个【向后输出20个字】** `输出`:**我觉得这个地方便,但是一个人的,但是一个人的,但是一个**
2023-04-17 01:30:45 3.88MB nlp rnn lstm
1
这里采用沪深300指数数据,时间跨度是2010年10月10号至今,选择每天的最高价格。假设当天最高价依赖当天的前n(如30)天的沪深300的最高价格。用LSTM模型来捕捉最高价的时序信息,通过模型训练,使之学会用前n天的最高价,来判断当天的最高价。
2023-04-16 20:26:26 88KB LSTM
1
在时间序列预测问题中,建立LSTM模型,采用python语言代码实现
2023-04-14 23:11:57 388KB lstm python 软件/插件
1
今天小编就为大家分享一篇pytorch 实现cross entropy损失函数计算方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2023-04-14 20:17:22 36KB pytorch nn.MSELoss 损失函数
1
神经网络LSTM 时间预测MATLAB源码,RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的。在传统的神经网络模型中,从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多关于时间序列的问题却无能无力。
2023-04-14 10:23:45 13KB 神经网络 MATLAB源码 LSTM时间预测 RNN