极限学习机ELM是一类Single-hidden Layer Feedforward Neural Network(SLFNs)算法,由Huang等基于 Moore-Penrose 广义逆的理论提出,主要针对SLFNs中存在的学习速率慢,迭代时间长,学习参数如学习步长、学习率需要人为提前设置等问题。与传统的神经网络学习算法相比,ELM只需要设置合适的隐层节点数,随机生成隐层所需所有参数,利用最小二乘法确定输出层权值。整个学习过程只需一步而无需多次更新隐层参数。正是因为ELM算法的快速学习能力以及较强的非线性逼近能力等特点,使得ELM在实际应用中受到了研究者们的青睐。 本代码给出了实现正则化极限学习机(RELM)、在线学习的极限学习机(OS-ELM)、带遗忘机制的在线学习极限学习机(FOS-ELM)使用python进行了实现,并基于一个简单的数据集对三种算法进行了比较,并比较了不同隐藏层节点对性能的影响。
2021-11-02 20:00:35 1.96MB ELM 极限学习机 机器学习 python
极限学习机
2021-10-28 14:24:07 102KB ELM
1
采用差分进化算法对极限学习机进行优化选择
2021-10-28 11:35:16 6KB matlab
1
matlab代码粒子群算法GPSI_tool_box Matlab代码,利用混合同伦-PSO算法和多核极限学习机对DNAPL污染的含水层进行有效的源识别和参数估计 地下水污染源识别(GPSI)对采取有效措施保护地下水资源,评估风险和设计补救策略至关重要,属于数学方程式的反问题,该数学方程式具有明显的非线性和不适定性。 关于稠密非水相液体(DNAPL)源的反演,污染物的特殊特征使相关研究更加复杂。 在当前的工具箱中,结合了基于同伦的优化逆理论和多核极限学习机(MK-ELM),可以有效地解决GPSI问题,同时估计DNAPL污染地点的含水层参数。 将包含多核与遗传算法(GA)的极限学习机嵌入到源反演的优化模型中,以代替多相流模拟模型并减轻反演迭代的可观计算负担。 混合同质粒子群算法(PSO)被构造为一种在不依赖初始值的情况下在宽广区域内分段搜索全局最优值的更有效方法。 结果表明,基于GA的MK-ELM和混合同质PSO的应用有效地完成了地下水污染源和含水层参数的同时识别。 主程序在“ Hybrid_homotopy-PSO_for_GPSI”文件夹中名为“ H_PSO_identificati
2021-10-24 17:09:10 407KB 系统开源
1
【预测模型】基于麻雀算法改进核极限学习机(KELM)分类算法 matlab源码.md
2021-10-20 15:23:23 12KB
1
【预测模型】基于哈里斯鹰算法改进核极限学习机(KELM)分类算法 matlab源码.md
2021-10-17 23:24:20 10KB
1
在新型干法水泥生产过程中,分解炉温度是一个非常重要的控制对象。由十分解炉出口温度与其影响因素不是简单的线性或者非线性关系,使得传统的建模方法精度较低。本文提出一种基于小波极限学习机的方法,通过对已有的大量数据进行训练、测试,实现对水泥窑分解炉温度的建模。实验结果表明,该方法泛化性能好、学习速度快、模型精度高,具有一定的实践指导意义。
2021-10-15 15:17:12 2.48MB 工程技术 论文
1
空气质量指数(Air Quality Index, AQI)预测可以为人们日常生产活动以及空气污染治理工作提供指导. 针对空气质量指数预测模型受离群点影响较大的问题, 利用孤立森林算法对空气质量数据集进行离群点分析, 采用离群鲁棒极限学习机模型(ORELM)对空气质量指数进行预测, 并构建误差修正模块对模型预测误差进行修正. 最后, 以北京市空气质量数据作为研究对象, 分别利用ORELM模型以及极限学习机(ELM)模型进行预测, 并对ORELM模型预测结果进行误差修正. 实验结果表明: 离群鲁棒极限学习机对离群点数据集泛化性能更强, 误差修正模块能有效提高模型的预测精度.
1