多年建站经验分享,最快1小时建设好一个属于自己的网站,适合小白快速学习入门
2021-12-13 16:02:15 17KB 建站学习 小白入门 博客 无监督学习
1
semi-supervised-learning半监督学习详细介绍PPT——共61页
2021-12-13 14:00:17 4.67MB ssl
半监督序列学习 此回购记录了重现论文给出的结果的实验​​。 简而言之,我们在未标记的文本数据上对序列自动编码器或语言模型进行预训练,然后使用标记的文本数据对使用预训练权重初始化的基于RNN的序列分类器进行微调,与随机初始化的权重相比,分类精度更高。 资料准备 IMDB数据集 我们为此实验使用。 下载并解压缩,导航至目录aclImdb/train ,该目录aclImdb/train中包含带aclImdb/train/pos的正( aclImdb/train/pos )和带标签的负性( aclImdb/train/neg )以及未标签的评论( aclImdb/train/unsup )。 然后cd进入每个子目录并运行 for f in *.txt; do (cat "${f}"; echo) >> pos.txt; done for f in *.txt; do (cat "${f}"; ec
1
利用决策树进行分类,使用了sklearn包。 决策树分类及sklearn实现决策树的定义决策树的组成信息增益python代码实现决策树可视化一些参考 相关文章: 数据挖掘 | [关联规则] 利用apyori库的关联规则python代码实现 数据挖掘 | [有监督学习——分类] 朴素贝叶斯及python代码实现——利用sklearn 数据挖掘 | [无监督学习——聚类] K-means聚类及python代码实现——利用sklearn 数据挖掘 | [无监督学习——聚类] 凝聚层次聚类及python代码实现——利用sklearn 决策树的定义 决策树,又称判定树,是一种类似于流程图的树结构,它提
2021-12-09 11:25:45 174KB ar le python
1
基于有监督的虚假评论检测方法受限于标注语料的规模,为了更好地利用未标注评论数据来提高分类器的正确率和泛化能力,本文提出一种基于半监督主动学习的虚假评论检测方法。首先,定义并提取评论内容特征以及评论者行为特征,结合这两类特征来对虚假评论进行检测。然后,采用基于熵的主动学习算法选择对学习最有帮助的评论样本,获得其类别标注,将其合并到基于Tri-training的半监督学习算法的训练集中,利用大量未标注评论数据进行学习,提升分类器性能。最后,在领域评论数据集上进行实验,结果表明,将半监督学习与主动学习相结合,能够更有效的利用未标注评论数据,从而有效地提高虚假评论检测的效果。
1
达斯尔 Dassl是一个工具箱,旨在研究领域适应和半监督学习(因此而命名为Dassl )。它具有模块化设计和统一的界面,可以快速进行原型设计和新DA / SSL方法的试验。使用Dassl,只需几行代码即可实现一种新方法。 您可以将Dassl用作库进行以下研究: 领域适应 域泛化 半监督学习 什么是新的 [2021年3月]我们刚刚在上发布了关于域泛化的调查,该调查总结了该主题的十年发展情况,涵盖了历史,相关问题,数据集,方法论,潜力方向等等。 [2021年1月]我们最近的工作 (混合不同域样本的实例级特征统计信息以改善域泛化)已被ICLR'21接受。该代码已在中发布,其中跨域图像分类部分基于Dassl.pytorch。 [2020年5月] v0.1.3 :添加了Digit-Single数据集,用于对单源DG方法进行基准测试。相应的CNN模型为 ,数据集配置文件为 。参见了解如何评估您的方
2021-12-08 15:22:30 146KB Python
1
深度聚类,用于视觉特征的无监督学习 消息 我们发布了新的自我监督方法SwAV的和。 SwAV使用ResNet-50将自我监督学习与ImageNet上的监督学习仅相距1.2%! 它结合了在线聚类和多作物数据增强功能。 我们还介绍了DeepCluster-v2,它是DeepCluster的改进版本(ResNet-50,更好的数据增强,余弦学习速率表,MLP投影头,质心的使用,...)。 查看。 深度集群 该代码实现了卷积神经网络或卷积网络的无监督训练,如论文所述。 此外,我们提供了本文中使用的评估协议代码: Pascal VOC分类 激活的线性分类 实例级图像检索 最后,该代码还包括可视化模块,该可视化模块允许以可视方式评估学习到的功能的质量。 要求 Python安装版本2.7 SciPy和scikit-learn软件包 一个PyTorch安装版本0.1.8( ) CUDA 8.0
2021-12-08 10:51:16 47KB Python
1
1、无监督学习 没有目标值(变量)的算法 常见的无监督学习算法: 降维: – 主成分分析PCA降维处理 聚类: – K-means(k均值聚类) 2、主成分分析 应用PCA实现特征的降维 ·定义:高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量 ·作用:是数据维散压缩,尽可能降低原数据的维数(复杂度),损失少量信息。 ·应用:回归分析或者聚类分析当中 PCA的APA: ·sklearn.decomposition.PCA(n_components=None) – 将数据分解为较低维数空间 n_components: ·小数:表示保留百分之多少的信息 ·整数:减少到多少特
2021-12-07 18:52:02 152KB k-means k-means算法 mean
1
《Hadoop大数据技术原理与应用》课后习题答案
2021-12-05 09:13:04 157KB 无监督学习
1
无监督学习-kmeans聚类算法及手动实现jupyter代码.ipynb
2021-12-04 13:13:35 818KB 机器学习 聚类
1