Visual C++ MATLAB图像处理与识别实用案例精选源码.rar
2021-09-20 22:08:50 15.56MB C++ _MATLAB 图像处理 图像识别
提出了一种基于多尺度特征融合的全卷积神经网络的视网膜血管分割方法, 无需手工设计特征和后处理过程。利用跳跃连接构建编码器-解码器结构全卷积神经网络, 将高层语义信息和低层特征信息进行融合; 利用残差块进一步学习细节和纹理特征; 利用不同空洞率的空洞卷积构建多尺度空间金字塔池化结构, 进一步扩大感受野, 充分结合图像上下文信息; 采用类别平衡损失函数解决正负样本不均衡问题。实验结果表明, 在DRIVE(Digital Retinal Images for Vessel Extraction)和STARE (Structured Analysis of the Retina)数据集上的准确率分别为95.46%和96.84%, 敏感性分别为80.53%和82.99%, 特异性分别为97.67%和97.94%, 受试者工作特征(ROC)曲线下的面积分别为97.71%和98.17%。所提方法相较于其他方法性能更优。
1
Hu不变量是怎么来的?看看这个就知道了
2021-09-10 15:05:00 240KB 图像处理 图像识别 计算机视觉
1
本设计为基于matlab的烟雾火焰火灾识别系统,可读取视频或者图象,检测出是否有烟雾火焰,具备一个人机交互式GUI界面,功能强大,识别准确,同时配备相对应的操作说明和运行效果图,直接运行GUI文件即可完美运行。另外,诸如车牌,人脸,图象去雾,压缩,水印,疲劳检测,人数统计,声音信号处理等均可做技术交琉,欢迎一起探讨。
2021-09-05 09:08:09 11.59MB matlab 图像处理 图像识别 火焰检测
1
本文档阐述深度学习技术和图像识别的关系,该文档用通俗易懂的方式解释相关术语的含义,适合内行人拿来给外行人讲解科普用
2021-08-19 11:40:32 2.76MB 深度学习 图像处理 图像识别 机器学习
1
<<Visual C++ 数字图像识别技术典型案例>>光盘 源码
2021-08-18 22:41:32 1.73MB VC++ 图像处理 模式识别 源码
1
细胞识别。经过一系列数字图像处理步骤后,可以把血液图中每个细胞都标识出来,并得出细胞数目,平均半径和平均面积。VC6.0源码,Debug里有生成的应用程序,打开附带的BMP图像后点击cell-processing按顺序进行图像处理最终可实现细胞计数。
2021-08-14 23:18:32 825KB 细胞 识别 计数 数字
1
计算机图像处理与识别技术——王耀南,很好的教材,是机器视觉的经典力作!
2021-08-06 17:02:14 10.66MB 计算机图像处理与识别技术
1
今天小编就为大家分享一篇Python图像处理之识别图像中的文字(实例讲解),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-07-20 15:48:33 111KB python 图像识别文字
1
一.概览 本人虽然是电子信息技术专业出身,在毕业后从事的是偏软件的工作,大多数是PC软件的开发,但一直以来,闲暇时间会利用STM32做些小的作品。对于RT-Thread这国内的物联网操作系统,其实早有耳闻,期间也参加过深圳的一次RT-Thread线下交流活动,所以对于RT-Thread是有所了解而未实际应用的程度。 借着此次RT-Thread大赛的机会,我想将PC的一些图像处理和图像识别算法放到art-pi试跑一下看看效果如何,所以本次参赛将会使用art-pi获取OV7670的图像来做像处理和图像识别。 二.开发环境 硬件:PC、ART-PI、OV7670、RGB_LCD RT-Thread版本:rt-thread4 .0.3,art-pi adk 1.1.0 开发工具及版本:立创EDA,RT-Studio,SecureCRT 三.RT-Thread使用情况概述 线程:创建图像处理线程用于通过DCMI获取OV7670的图像,图像处理后完显示在LCD上 信号量:用于DCMI图像获取,当捕捉完一帧图像后,释放信号量给图像处理线程。 驱动:使用了drv_dcmi驱动并参考drv_ov2640移植drv_ov7670驱动 四.实现功能展示 通过摄像头采集图像进行图像识别,然后将结果显示在LCD屏幕上。 五.硬件框架 本次的硬件核心由ART-PI、OV7670、LCD三部分组成: ART-PI:stm32H750作为控制核心部分,采集图像源数据、处理图像源生成处理结果、将处理结果送到LCD显示 OV7670:作为图像源,提供320*240的RGB565图像 LCD:实时显示图像源图像和显示处理结果 六.软件流程图 1. 硬件初始化:时钟、I2C、DCMI、SDRAM、LTDC 2. 进入图像处理线程,启动拍照并等待拍照完成信号量 3. 完成拍照释放拍照完成信号量 4. 得到图像后,进行图像处理与图像识别 5. 将图像识别结果在LCD上显示 6. 回到步骤2 七.图像识别功能介绍 通过DCMI驱动获取OV7670的分辨率为320*240的RGB565原始图像。RGB565每个像素使用用下图的方式存储,每个像素占用2个字节。所以每帧320*240的图像所需内存为320*240*2=153600字节。 实际上,我们在这次项目中并不需要使用到彩色特征,所以先将RGB565转换为灰色度。灰度图其实就是每个像素占用一字节,用0-255值来形容一个像素的灰度值。因此320*240所占用的内存为76800字节。 RGB565转灰度图公式如下:Gray = R*0.299 + G*0.587 + B*0.114 提取的灰度图后,我们还需要再进行一次二值化处理,因此设定一个阈值,当灰色像素大于这个阈值我们将它改为255,低于这个值变成0。这样就得到一帧只有0和225值的图像。 得到二值化图像后,我们便可以寻找要识别物体了。在此使用九宫格的方式提取连通分量,原理其实很简单,就是在九宫格里寻找连在一起的像素,如果能找到便将该像素便将该像素的坐标(位于X行,y列)写入到链表里。如此循环,直到找完所有像素。 完成连通分量的提取后便是特征提取了,我们还是采用九宫格分割法,将取得的图像平均分割为9个区域,再计算9个区域中值为255像素的个数。通过这一步算法,我们得到了9组特征数据。 本次用了两种特征提取方式: 1.通过水平与垂直方向的穿越数找出部分数字 以数字0和7为例,在1/2宽度处,0和7稳定的得到垂直穿越数是2.而在1/2高度,0的水平穿越数是2,7的水平穿越数是1. 2.在图像的水平和垂直的中间切分成四块,根据四个部分不同像素比例找出其他数字。以2和3为例 ,在右下角部分,3的每一行都会有像素点,而2会缺几行。因此2的像素更少从而区分2和3。 最终检测效果如下图: 八.比赛感悟 虽然标题是比赛感悟,实际上比赛并不是我的目的。RT-Thread我知道它更久了,但是一直没有去更进一步使用RT-Thread。这次比赛让我深入了解了RT-Thread的生态系统,给我的感觉真的太惊喜了。RT-Thread平台拥有丰富的组件,完善的各种外设驱动,通过官方的RT-Studio基本上做到入手即用了。 当时拿到ART-PI,通过RT-Thread SETTING进行勾选,再使用CubeMX选择外设,生成引脚初始化代码后。我本次项目的软件基本平台已经完成了,我只需要专注于我的应用层开发便可以了,这真的是太便利了。 通过本次比赛,让我对RT-Thread获得相当大的好感,我想未来硬件项目当中,我会毫不犹豫的选择RT-Thread代替其他实时操作系统。
2021-07-11 10:13:25 10.2MB ov7670 图像识别 图像处理 rt-thread
1