本文详细介绍了如何使用TensorRT10.x版本和C++ SDK部署YOLO11系列模型,包括目标检测、实例分割和姿态评估。YOLO11作为Ultralytics最新发布的视觉轻量化框架,在特征提取、效率、速度和准确性方面均有显著提升。文章提供了获取输入输出层维度的代码示例,以及更新后的推理API函数,直接输入GPU缓存数据进行推理。此外,还展示了如何封装C++代码,实现客户端三行代码即可调用的功能,支持YOLOv5至YOLO12系列模型的一键集成部署与量化。 YOLO11模型作为Ultralytics公司最新推出的视觉轻量化框架,在视觉识别领域具有重要地位。YOLO11系列模型在保持了高准确率的同时,在速度和效率上得到了显著提升。YOLO11不仅改进了特征提取机制,还在模型设计上进行了优化,使其更加轻量级,非常适合于实时目标检测场景。 TensorRT是NVIDIA推出的深度学习推理加速平台,专门优化GPU上的深度学习应用。TensorRT10.x版本在加速推理方面性能卓越,为部署高性能的深度学习模型提供了强大的支持。结合TensorRT和YOLO11,开发者可以构建出在速度和准确性上都十分出色的实时视觉应用。 在本文中,详细介绍了如何利用TensorRT10.x版本和C++ SDK来部署YOLO11模型。文章不仅提供了获取YOLO11模型输入输出层维度的代码示例,还更新了推理API函数,使得开发者可以将GPU缓存数据直接用于推理任务。这对于优化模型在GPU上的运行效率至关重要。 此外,文章还展示了如何封装C++代码,简化部署过程,让开发者能够通过简单的三行代码调用功能,极大地提高了开发效率。YOLO11模型不仅支持YOLOv5,还支持YOLO12系列的模型一键集成部署与量化,这样的特性使得YOLO11在跨版本的模型部署上具有很好的通用性和灵活性。 这种部署方式特别适合于那些需要在边缘设备上进行实时目标检测的场景,如视频监控、自动驾驶等。YOLO11与TensorRT的结合,不仅在速度上有了显著的提升,而且在模型精度上也能够满足实际应用需求。这对于希望在保持较高精度的同时,提高模型推理速度的开发者来说,是一个非常值得推荐的解决方案。 YOLO11和TensorRT的集成使用,标志着实时视觉识别应用进入了一个新的阶段。这为开发者提供了强大的工具,可以在实际项目中部署快速且准确的视觉模型。同时,这种集成方法也为未来视觉识别技术的发展打开了新的道路。 YOLO11系列模型的成功部署,不仅提升了深度学习模型在实际应用中的性能,也为深度学习社区提供了一个高效的模型集成和部署案例。通过这一案例,开发者能够更好地理解如何在不同的应用场景中选择和优化深度学习模型,推动了整个领域的发展。 YOLO11模型和TensorRT的结合,不仅为视觉识别领域带来了突破,也为深度学习模型在工业界的应用提供了新的思路和实践。这些进展不仅对技术研究有着深远的影响,也对实际产品的智能化升级提供了有力的技术支持。
2026-01-27 11:50:27 25KB 推理加速 TensorRT
1
用于ARM架构的linux系统中(比如英伟达Jetson开发板)安装的onnxruntime_gpu-1.15.1版本。
2025-11-27 18:14:25 36.12MB jetson TensorRT
1
内容概要:本文系统阐述了端到端自动驾驶系统的完整实现链路,从Comma.ai架构解析到PyTorch模型训练,再到TensorRT部署优化,最后实现安全接管机制。文章首先介绍了端到端架构的技术背景及其相对于传统分模块处理的优势。接着,详细描述了系统架构设计,包括多模态传感器融合方案(如摄像头+雷达+IMU的时空对齐)和神经网络架构设计(如3D卷积+LSTM的时空特征提取)。然后,讲解了数据采集、数据增强策略及模型训练与优化的具体方法。此外,还探讨了安全接管机制的实现,如多模态接管预警系统和故障安全降级策略。最后,通过闭环测试框架和性能基准测试评估系统性能,并提出了未来的发展方向,如引入Transformer架构、强化学习等。 适合人群:对自动驾驶技术感兴趣的工程师、研究人员以及有一定编程基础并希望深入了解端到端自动驾驶系统设计与实现的专业人士。 使用场景及目标:①帮助读者理解端到端自动驾驶系统的工作原理和技术细节;②指导读者使用Comma.ai架构和PyTorch框架构建高性能自动驾驶模型;③提供安全接管机制的设计思路,确保系统在异常情况下的可靠性。 其他说明:本文不仅提供了理论知识,还附有详细的代码示例,涵盖了从数据采集到模型部署的各个环节。同时,文中还展示了性能测试结果,为实际应用提供了参考依据。未来发展方向的讨论也为进一步研究指明了路径。
2025-08-27 17:20:50 191KB 自动驾驶 PyTorch TensorRT 深度学习
1
英伟达TensorRT是一款由NVIDIA公司开发的高性能深度学习推理(Inference)优化和部署工具,主要用于提升基于GPU的深度学习模型的运行速度。它能够将训练好的神经网络模型转化为高效的C++库,实现低延迟和高吞吐量的推理操作。在AI应用中,尤其是在实时分析、自动驾驶、视频处理等领域,TensorRT发挥着至关重要的作用。 TensorRT支持多种流行的深度学习框架,如TensorFlow、Caffe、PyTorch等,通过将这些框架中的模型转换为专为NVIDIA GPU优化的计算图,能够在保持精度的同时显著提高推理性能。对于描述中提到的YOLOv3和YOLOv4,这两种是基于深度学习的目标检测模型,TensorRT可以帮助这些模型在实际应用中更快地进行目标识别。 在YOLO(You Only Look Once)系列模型中,YOLOv3和YOLOv4都是实时目标检测的典范,它们具有快速和准确的特性。利用TensorRT,这些模型可以进一步加速,达到更低的推理时间,这对于需要实时响应的应用场景尤为重要。例如,在自动驾驶汽车中,快速准确的目标检测是安全驾驶的关键。 TensorRT的工作流程包括模型导入、解析、优化和编译。用户需要将训练好的模型导入到TensorRT,然后平台会解析模型结构,并进行一系列优化,如层融合、动态量化等,以减少计算量和内存占用。经过优化的模型会被编译成可以在GPU上执行的二进制文件,这个二进制文件可以在运行时直接加载,无需每次推理都进行解析和优化过程,从而大大提高效率。 在压缩包文件"TensorRT-6.0.1.5"中,包含了TensorRT 6.0.1.5版本的安装文件和相关文档。安装后,开发者可以通过NVIDIA的CUDA库和cuDNN库(用于GPU加速的深度学习库)与TensorRT集成,实现模型的优化和部署。同时,TensorRT还提供了丰富的API和示例代码,帮助开发者快速上手。 英伟达TensorRT是深度学习推理阶段的重要工具,它通过高效优化技术,使得模型在NVIDIA GPU上得以高速运行,尤其对于处理大规模数据的机器学习任务,如目标检测、语音识别等,能显著提升系统性能。通过掌握TensorRT的使用,开发者可以更好地利用硬件资源,构建出更加强大和高效的AI应用。
2025-07-14 12:08:30 690.46MB 机器学习 yolo
1
内容概要:本文介绍了如何通过TensorRT加速YOLOv5模型推理,并结合QT框架搭建一个高效的智能监控平台。具体来说,YOLOv5模型被转换为ONNX格式并通过TensorRT进行优化,最终封装成DLL以支持多线程多任务并行处理。QT框架则用于实现视频监控、录像回放、电子地图、日志记录和系统设置等功能。此外,文章还详细讲解了如何在QT平台上实现16路视频的同时加载和并行检测,展示了具体的代码实现。 适合人群:对智能监控系统感兴趣的开发者和技术爱好者,尤其是有一定深度学习和QT开发经验的人群。 使用场景及目标:适用于需要高效、智能监控系统的应用场景,如安防、交通监控等领域。目标是提高监控系统的实时性和准确性,同时降低硬件成本和功耗。 其他说明:文章不仅提供了理论介绍,还包括详细的代码示例,帮助读者更好地理解和应用相关技术。
2025-06-19 10:15:25 2.45MB
1
(1)提供tensorrt-8.2.3.0-cp38-none-linux_aarch64.whl和onnxruntime_gpu-1.16.0-cp38-cp38-linux_aarch64.whl,严格匹配JetPack4.6(CUDA10.2+Python3.8)环境,规避手动编译耗时与依赖冲突问题‌。 (2)支持YOLOv8/v11模型的TensorRT加速推理,集成ONNX模型转换工具链(ONNX→TensorRT引擎),提升推理速度3倍+‌。
2025-03-31 18:45:16 23.48MB JetsonNano tensorRT ONNX
1
使用TensorRT API_YOLOv11-TensorRT的YOLOv11的C++实现
2024-12-03 15:06:56 5.61MB
1
YOLOv11 C++ TensorRT 项目是一个用C++实现并使用NVIDIA TensorRT进行优化的高性能对象检测解决方案。该项目利用 YOLOv11 模型提供快速准确的对象检测,并利用 TensorRT 最大限度地提高推理效率和性能。 主要特点: 模型转换:将 ONNX 模型转换为 TensorRT 引擎文件以加速推理。 视频推理:有效地对视频文件进行对象检测。 图像推理:对单个图像执行对象检测。 高效率:针对使用 NVIDIA GPU 的实时物体检测进行了优化。 使用 CUDA 进行预处理:支持 CUDA 的预处理,可实现更快的输入处理。 先决条件 CMake(版本 3.18 或更高版本) TensorRT(V8.6.1.6:用于使用 YOLOv11 进行优化推理。) CUDA 工具包(V11.7:用于 GPU 加速) OpenCV(V4.10.0:用于图像和视频处理) NVIDIA GPU(计算能力 7.5 或更高)
2024-12-03 15:04:21 12.3MB TensorRT 目标检测
1
logging.h
2024-08-15 14:23:24 16KB
1
在本项目中,我们将深入探讨如何使用TensorRT部署SuperPoint和SuperGlue算法,这是一个优质的算法部署实战案例。TensorRT是NVIDIA推出的一款高性能的深度学习推理(Inference)优化和运行时库,它能够为深度学习模型提供高效的运行速度和低延迟。SuperPoint和SuperGlue是计算机视觉领域的关键算法,分别用于特征检测与描述以及特征匹配。 让我们了解SuperPoint算法。SuperPoint是一种自监督学习的局部特征检测和描述符方法,它的设计目标是能够在各种复杂的环境和光照条件下稳定地提取出图像的关键点,并为其分配独特的描述符。该算法通过对比度度量、响应度选择和几何一致性检查等步骤,确保了所提取特征的质量和稳定性。 接下来是SuperGlue,它是一个两阶段的特征匹配框架。在第一阶段,SuperGlue利用图神经网络(GNN)来学习特征之间的关系,以增强匹配的准确性。第二阶段,它采用了一种基于注意力的匹配策略,根据特征之间的相似性进行加权,从而提高匹配的鲁棒性。SuperGlue在图像配对、姿态估计和三维重建等领域有着广泛的应用。 TensorRT在部署SuperPoint和SuperGlue时的角色至关重要。它通过将深度学习模型转换为高效的C++接口,可以显著加速推理过程。TensorRT支持模型的优化,包括量化、裁剪和层融合,这些技术有助于减少计算资源的需求,同时保持模型的精度。在实际应用中,这通常意味着更快的处理速度和更低的功耗。 在实战项目中,我们首先需要将训练好的SuperPoint和SuperGlue模型转换为TensorRT兼容的格式。这通常涉及模型的序列化,以便TensorRT可以理解和优化模型的计算图。然后,我们需要编写C++或Python代码来加载模型,处理输入图像,执行推理,并处理输出结果。在这个过程中,我们需要注意数据类型的转换,以及输入和输出的尺寸和格式,以确保与TensorRT的接口匹配。 为了验证部署效果,我们需要使用测试数据集来评估模型的性能。这可能包括计算特征检测的速度、特征匹配的精度等指标。此外,我们还需要关注模型在不同硬件平台上的表现,比如GPU、CPU或者嵌入式设备,以确定最合适的部署方案。 这个项目将指导你如何利用TensorRT高效地部署SuperPoint和SuperGlue算法,实现高质量的特征检测和匹配。通过实践,你将掌握深度学习模型优化、推理引擎使用以及性能调优等关键技能,这对于在实际的计算机视觉项目中应用这些先进算法具有很高的价值。
2024-07-28 11:48:41 100.54MB TensorRT SuperPoint SuperGlue 优质项目
1