英伟达TensorRT

上传者: LeeKitch | 上传时间: 2025-07-14 12:08:30 | 文件大小: 690.46MB | 文件类型: GZ
英伟达TensorRT是一款由NVIDIA公司开发的高性能深度学习推理(Inference)优化和部署工具,主要用于提升基于GPU的深度学习模型的运行速度。它能够将训练好的神经网络模型转化为高效的C++库,实现低延迟和高吞吐量的推理操作。在AI应用中,尤其是在实时分析、自动驾驶、视频处理等领域,TensorRT发挥着至关重要的作用。 TensorRT支持多种流行的深度学习框架,如TensorFlow、Caffe、PyTorch等,通过将这些框架中的模型转换为专为NVIDIA GPU优化的计算图,能够在保持精度的同时显著提高推理性能。对于描述中提到的YOLOv3和YOLOv4,这两种是基于深度学习的目标检测模型,TensorRT可以帮助这些模型在实际应用中更快地进行目标识别。 在YOLO(You Only Look Once)系列模型中,YOLOv3和YOLOv4都是实时目标检测的典范,它们具有快速和准确的特性。利用TensorRT,这些模型可以进一步加速,达到更低的推理时间,这对于需要实时响应的应用场景尤为重要。例如,在自动驾驶汽车中,快速准确的目标检测是安全驾驶的关键。 TensorRT的工作流程包括模型导入、解析、优化和编译。用户需要将训练好的模型导入到TensorRT,然后平台会解析模型结构,并进行一系列优化,如层融合、动态量化等,以减少计算量和内存占用。经过优化的模型会被编译成可以在GPU上执行的二进制文件,这个二进制文件可以在运行时直接加载,无需每次推理都进行解析和优化过程,从而大大提高效率。 在压缩包文件"TensorRT-6.0.1.5"中,包含了TensorRT 6.0.1.5版本的安装文件和相关文档。安装后,开发者可以通过NVIDIA的CUDA库和cuDNN库(用于GPU加速的深度学习库)与TensorRT集成,实现模型的优化和部署。同时,TensorRT还提供了丰富的API和示例代码,帮助开发者快速上手。 英伟达TensorRT是深度学习推理阶段的重要工具,它通过高效优化技术,使得模型在NVIDIA GPU上得以高速运行,尤其对于处理大规模数据的机器学习任务,如目标检测、语音识别等,能显著提升系统性能。通过掌握TensorRT的使用,开发者可以更好地利用硬件资源,构建出更加强大和高效的AI应用。

文件下载

资源详情

[{"title":"( 1413 个子文件 690.46MB ) 英伟达TensorRT","children":[{"title":"libnvinfer.so.6.0.1 <span style='color:#111;'> 208.91MB </span>","children":null,"spread":false},{"title":"libnvinfer.so.6.0.1 <span style='color:#111;'> 208.91MB </span>","children":null,"spread":false},{"title":"libnvonnxparser.so.6.0.1 <span style='color:#111;'> 5.74MB </span>","children":null,"spread":false},{"title":"libnvonnxparser.so.6.0.1 <span style='color:#111;'> 5.74MB </span>","children":null,"spread":false},{"title":"libnvinfer_plugin.so.6.0.1 <span style='color:#111;'> 4.29MB </span>","children":null,"spread":false},{"title":"libnvinfer_plugin.so.6.0.1 <span style='color:#111;'> 4.29MB </span>","children":null,"spread":false},{"title":"libnvonnxparser_runtime.so.6.0.1 <span style='color:#111;'> 3.62MB </span>","children":null,"spread":false},{"title":"libnvonnxparser_runtime.so.6.0.1 <span style='color:#111;'> 3.62MB </span>","children":null,"spread":false},{"title":"libnvcaffe_parser.so.6.0.1 <span style='color:#111;'> 3.16MB </span>","children":null,"spread":false},{"title":"libnvparsers.so.6.0.1 <span style='color:#111;'> 3.16MB </span>","children":null,"spread":false},{"title":"libnvcaffe_parser.so.6.0.1 <span style='color:#111;'> 3.16MB </span>","children":null,"spread":false},{"title":"libnvparsers.so.6.0.1 <span style='color:#111;'> 3.16MB </span>","children":null,"spread":false},{"title":"libnvinfer.so.6 <span style='color:#111;'> 208.91MB </span>","children":null,"spread":false},{"title":"libnvinfer.so.6 <span style='color:#111;'> 208.91MB </span>","children":null,"spread":false},{"title":"libnvonnxparser.so.6 <span style='color:#111;'> 5.74MB </span>","children":null,"spread":false},{"title":"libnvonnxparser.so.6 <span style='color:#111;'> 5.74MB </span>","children":null,"spread":false},{"title":"libnvinfer_plugin.so.6 <span style='color:#111;'> 4.29MB </span>","children":null,"spread":false},{"title":"libnvinfer_plugin.so.6 <span style='color:#111;'> 4.29MB </span>","children":null,"spread":false},{"title":"libnvonnxparser_runtime.so.6 <span style='color:#111;'> 3.62MB </span>","children":null,"spread":false},{"title":"libnvonnxparser_runtime.so.6 <span style='color:#111;'> 3.62MB </span>","children":null,"spread":false},{"title":"libnvcaffe_parser.so.6 <span style='color:#111;'> 3.16MB </span>","children":null,"spread":false},{"title":"libnvparsers.so.6 <span style='color:#111;'> 3.16MB </span>","children":null,"spread":false},{"title":"libnvcaffe_parser.so.6 <span style='color:#111;'> 3.16MB </span>","children":null,"spread":false},{"title":"libnvparsers.so.6 <span style='color:#111;'> 3.16MB </span>","children":null,"spread":false},{"title":"libnvinfer_static.a <span style='color:#111;'> 240.75MB </span>","children":null,"spread":false},{"title":"libnvinfer_static.a <span style='color:#111;'> 240.75MB </span>","children":null,"spread":false},{"title":"libprotobuf.a <span style='color:#111;'> 15.22MB </span>","children":null,"spread":false},{"title":"libprotobuf.a <span style='color:#111;'> 15.22MB </span>","children":null,"spread":false},{"title":"libnvinfer_plugin_static.a <span style='color:#111;'> 5.25MB </span>","children":null,"spread":false},{"title":"libnvinfer_plugin_static.a <span style='color:#111;'> 5.25MB </span>","children":null,"spread":false},{"title":"libnvcaffe_parser.a <span style='color:#111;'> 4.39MB </span>","children":null,"spread":false},{"title":"libnvparsers_static.a <span style='color:#111;'> 4.39MB </span>","children":null,"spread":false},{"title":"libnvcaffe_parser.a <span style='color:#111;'> 4.39MB </span>","children":null,"spread":false},{"title":"libnvparsers_static.a <span style='color:#111;'> 4.39MB </span>","children":null,"spread":false},{"title":"libprotobuf-lite.a <span style='color:#111;'> 1.28MB </span>","children":null,"spread":false},{"title":"libprotobuf-lite.a <span style='color:#111;'> 1.28MB </span>","children":null,"spread":false},{"title":"libnvonnxparser_static.a <span style='color:#111;'> 914.75KB </span>","children":null,"spread":false},{"title":"libnvonnxparser_static.a <span style='color:#111;'> 914.75KB </span>","children":null,"spread":false},{"title":"libnvonnxparser_runtime_static.a <span style='color:#111;'> 172.91KB </span>","children":null,"spread":false},{"title":"libnvonnxparser_runtime_static.a <span style='color:#111;'> 172.91KB </span>","children":null,"spread":false},{"title":"mnist_mean.binaryproto <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":".buildinfo <span style='color:#111;'> 230B </span>","children":null,"spread":false},{"title":"ResNet50_fp32.caffemodel <span style='color:#111;'> 97.72MB </span>","children":null,"spread":false},{"title":"googlenet.caffemodel <span style='color:#111;'> 51.05MB </span>","children":null,"spread":false},{"title":"mnist.caffemodel <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"mnist_lenet.caffemodel <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"checkpoint <span style='color:#111;'> 247B </span>","children":null,"spread":false},{"title":"Makefile.config <span style='color:#111;'> 7.91KB </span>","children":null,"spread":false},{"title":"Makefile.config <span style='color:#111;'> 7.91KB </span>","children":null,"spread":false},{"title":"sampleNMT.cpp <span style='color:#111;'> 61.02KB </span>","children":null,"spread":false},{"title":"sampleNMT.cpp <span style='color:#111;'> 61.02KB </span>","children":null,"spread":false},{"title":"sampleOptions.cpp <span style='color:#111;'> 36.32KB </span>","children":null,"spread":false},{"title":"sampleOptions.cpp <span style='color:#111;'> 36.32KB </span>","children":null,"spread":false},{"title":"sampleINT8API.cpp <span style='color:#111;'> 30.98KB </span>","children":null,"spread":false},{"title":"sampleINT8API.cpp <span style='color:#111;'> 30.98KB </span>","children":null,"spread":false},{"title":"sampleCharRNN.cpp <span style='color:#111;'> 30.94KB </span>","children":null,"spread":false},{"title":"sampleCharRNN.cpp <span style='color:#111;'> 30.94KB </span>","children":null,"spread":false},{"title":"sampleMovieLensMPS.cpp <span style='color:#111;'> 29.46KB </span>","children":null,"spread":false},{"title":"sampleMovieLensMPS.cpp <span style='color:#111;'> 29.46KB </span>","children":null,"spread":false},{"title":"sampleUffPluginV2Ext.cpp <span style='color:#111;'> 26.22KB </span>","children":null,"spread":false},{"title":"sampleUffPluginV2Ext.cpp <span style='color:#111;'> 26.22KB </span>","children":null,"spread":false},{"title":"sampleMovieLens.cpp <span style='color:#111;'> 24.34KB </span>","children":null,"spread":false},{"title":"sampleMovieLens.cpp <span style='color:#111;'> 24.34KB </span>","children":null,"spread":false},{"title":"sampleReformatFreeIO.cpp <span style='color:#111;'> 23.99KB </span>","children":null,"spread":false},{"title":"sampleReformatFreeIO.cpp <span style='color:#111;'> 23.99KB </span>","children":null,"spread":false},{"title":"sampleFasterRCNN.cpp <span style='color:#111;'> 21.34KB </span>","children":null,"spread":false},{"title":"sampleFasterRCNN.cpp <span style='color:#111;'> 21.34KB </span>","children":null,"spread":false},{"title":"sampleMLP.cpp <span style='color:#111;'> 20.63KB </span>","children":null,"spread":false},{"title":"sampleMLP.cpp <span style='color:#111;'> 20.63KB </span>","children":null,"spread":false},{"title":"sampleINT8.cpp <span style='color:#111;'> 18.78KB </span>","children":null,"spread":false},{"title":"sampleINT8.cpp <span style='color:#111;'> 18.78KB </span>","children":null,"spread":false},{"title":"sampleMNISTAPI.cpp <span style='color:#111;'> 18.05KB </span>","children":null,"spread":false},{"title":"sampleMNISTAPI.cpp <span style='color:#111;'> 18.05KB </span>","children":null,"spread":false},{"title":"sampleUffSSD.cpp <span style='color:#111;'> 17.35KB </span>","children":null,"spread":false},{"title":"sampleUffSSD.cpp <span style='color:#111;'> 17.35KB </span>","children":null,"spread":false},{"title":"sampleDynamicReshape.cpp <span style='color:#111;'> 16.69KB </span>","children":null,"spread":false},{"title":"sampleDynamicReshape.cpp <span style='color:#111;'> 16.69KB </span>","children":null,"spread":false},{"title":"sampleSSD.cpp <span style='color:#111;'> 16.54KB </span>","children":null,"spread":false},{"title":"sampleSSD.cpp <span style='color:#111;'> 16.54KB </span>","children":null,"spread":false},{"title":"sampleEngines.cpp <span style='color:#111;'> 16.49KB </span>","children":null,"spread":false},{"title":"sampleEngines.cpp <span style='color:#111;'> 16.49KB </span>","children":null,"spread":false},{"title":"samplePlugin.cpp <span style='color:#111;'> 16.14KB </span>","children":null,"spread":false},{"title":"samplePlugin.cpp <span style='color:#111;'> 16.14KB </span>","children":null,"spread":false},{"title":"sampleMNIST.cpp <span style='color:#111;'> 15.63KB </span>","children":null,"spread":false},{"title":"sampleMNIST.cpp <span style='color:#111;'> 15.63KB </span>","children":null,"spread":false},{"title":"sampleUffMNIST.cpp <span style='color:#111;'> 14.26KB </span>","children":null,"spread":false},{"title":"sampleUffMNIST.cpp <span style='color:#111;'> 14.26KB </span>","children":null,"spread":false},{"title":"sampleOnnxMNIST.cpp <span style='color:#111;'> 13.02KB </span>","children":null,"spread":false},{"title":"sampleOnnxMNIST.cpp <span style='color:#111;'> 13.02KB </span>","children":null,"spread":false},{"title":"FlattenConcat.cpp <span style='color:#111;'> 11.53KB </span>","children":null,"spread":false},{"title":"FlattenConcat.cpp <span style='color:#111;'> 11.53KB </span>","children":null,"spread":false},{"title":"sampleGoogleNet.cpp <span style='color:#111;'> 10.73KB </span>","children":null,"spread":false},{"title":"sampleGoogleNet.cpp <span style='color:#111;'> 10.73KB </span>","children":null,"spread":false},{"title":"trtexec.cpp <span style='color:#111;'> 10.23KB </span>","children":null,"spread":false},{"title":"trtexec.cpp <span style='color:#111;'> 10.23KB </span>","children":null,"spread":false},{"title":"beamSearchPolicy.cpp <span style='color:#111;'> 8.69KB </span>","children":null,"spread":false},{"title":"beamSearchPolicy.cpp <span style='color:#111;'> 8.69KB </span>","children":null,"spread":false},{"title":"bleuScoreWriter.cpp <span style='color:#111;'> 8.66KB </span>","children":null,"spread":false},{"title":"bleuScoreWriter.cpp <span style='color:#111;'> 8.66KB </span>","children":null,"spread":false},{"title":"customClipPlugin.cpp <span style='color:#111;'> 8.12KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明