本书系统阐述了如何构建可重复、可靠且成本效益高的数据治理框架。通过‘操作手册’形式,提供从角色定义、流程设计到质量控制的完整方法论。涵盖数据编目、主数据管理、业务术语表建设等核心工作流,并结合行业案例与评估模型,帮助组织实现数据驱动决策。书中强调治理与架构、风险管理的协同,提出数据控制图、质量标签化等创新实践,适用于企业数据管理者、IT专业人员及业务领导者,是推动数据治理落地的实用宝典。 数据治理是一项涉及组织内所有利益相关者的任务,其目的在于确保数据资产的管理有序、有效,并为整个组织提供支持。数据治理的核心在于建立一套全面的管理机制,确保数据从生成到存储、再到使用的全过程中,数据的可用性、安全性、一致性及合规性都得到妥善维护。 数据治理的关键组成部分包括数据所有权的明确、数据质量的控制、数据安全的保障、数据生命周期的管理以及数据架构的设计。良好的数据治理能够帮助企业建立信任,提高运营效率,降低风险,并为数据驱动的决策提供支持。 在数据治理框架的构建中,操作手册形式的指南提供了明确的步骤和方法。需要定义不同角色及其职责,如数据所有者、数据管理者、数据消费者等。角色定义之后,接下来是流程设计,包括数据收集、处理、存档和销毁等流程的设计,以及各流程的执行标准和规则。 数据编目是数据治理中的一项基础性工作,它涉及对组织内所有数据资产的详细记录和分类。这有助于识别和理解不同数据集的来源、格式、用途和价值等重要信息。主数据管理(MDM)则聚焦于维护组织的核心数据的完整性和准确性,如客户、产品、供应商等关键业务实体的数据。 业务术语表的建设有助于统一组织内的数据语言,确保不同部门之间在数据解释和使用上的一致性。这一工作的完成,不仅提高了数据共享的效率,还有助于减少因术语歧义而产生的沟通成本。 数据治理还与风险管理紧密相关,因为有效的治理机制能够及时发现和缓解数据相关的风险,包括数据泄露、数据损坏、数据不一致等。在实践当中,数据治理的实施需要依赖一定的评估模型,通过这些模型可以对数据治理的有效性进行量化评估,从而持续优化和改进治理实践。 在数据治理的实施中,创新实践如数据控制图和质量标签化等工具被提出来提高数据质量。数据控制图是一种将数据流程可视化的方法,有助于快速识别问题环节,提升数据流转的效率;而质量标签化则通过给数据打上质量标签来直观地显示数据质量水平,方便数据治理人员和数据用户做出更加明智的决策。 本书《数据治理实战指南》的主要受众包括企业数据管理者、IT专业人员及业务领导者。这本实战手册为这些利益相关者提供了可操作性强的方法论,协助他们将数据治理的原则和方法实际应用到组织运营中,从而推动数据治理在企业中的实际落地,实现数据驱动的业务增长和决策优化。 此外,书中还结合了行业案例和评估模型来增强其实用性,帮助读者更好地理解数据治理在真实场景中的应用效果,以及如何根据自身组织的特点来调整和优化数据治理策略。这些案例和模型不仅为读者提供了学习的参考,同时也提供了一种评估自身数据治理实施效果的手段。 《数据治理实战指南》是一本全面且深入的实用工具书,它不仅仅关注理论的探讨,更加注重于如何在实际工作中落地生根,对于有志于提升组织数据管理水平的读者来说,这将是一本不可或缺的指南。
2026-02-02 10:32:22 21.43MB 数据治理 数据分析 数据质量
1
西门子S7-1200通过Modbus RTU通讯实现仪表数据读写:轮询控制32路485设备的程序与软件手册介绍,西门子S7-1200通过Modbus RTU通讯实现仪表数据读写:轮询控制32路485设备的程序与软件手册介绍,西门子S7-1200用Modbus RTU 通讯#读写仪表数据,轮询程序,单个模块可以控制32路485设备。 含程序、软件、说明书。 ,西门子S7-1200; Modbus RTU通讯; 读写仪表数据; 轮询程序; 模块控制; 485设备连接; 含程序; 含软件; 含说明书。,西门子S7-1200 Modbus RTU通讯程序:轮询控制32路485设备,含全套程序与手册
2026-02-02 08:29:45 14.51MB 哈希算法
1
本文详细介绍了如何使用YOLOv8模型训练三角洲行动目标检测系统。内容包括环境配置、数据准备、模型选择与配置、训练模型以及评估和优化五个关键步骤。数据集包含5万张256×256的JPG格式图像,采用YOLO水平框标签(txt)标注敌人和队友,并加入负样本提升泛化能力。文章提供了数据集的目录结构示例、data.yaml文件的配置方法,以及加载预训练模型并开始训练的代码示例。最后,还介绍了如何评估模型性能并进行优化。 在本项目中,YOLOv8模型被用于训练一个三角洲行动目标检测系统。整个项目从环境配置开始,保证了训练环境的稳定和高效。为了完成模型训练,首先需要准备合适的数据集,其中包含5万张分辨率为256×256的JPG格式图像。数据标注是目标检测项目的关键一环,本文提到的数据集采用了YOLO水平框标签形式标注敌人和队友的具体位置,这种方式有利于模型更好地理解和学习检测目标。同时,为了增强模型的泛化能力,加入了负样本,这样能够减少过拟合的风险,使得模型在面对真实世界的情况时拥有更好的适应性和准确性。 数据集的组织结构对于模型训练同样重要。本项目提供了一个数据集目录结构示例,以确保数据在读取和处理过程中的高效性和准确性。此外,文章还详细介绍了如何配置data.yaml文件,这是一个包含了数据集相关信息的配置文件,对于模型训练过程中正确读取和使用数据集起到了关键作用。 在配置好环境和数据之后,接下来的步骤是模型的选择和配置。YOLOv8作为一个训练有素的深度学习模型,其选择充分体现了对项目性能的高要求。本文不仅提供了加载预训练模型的代码示例,还详细说明了如何根据项目需求对模型进行相应的配置调整。 训练模型是目标检测项目中的核心部分,该文展示了完整的训练代码示例,帮助读者理解如何使用深度学习框架来训练模型。训练过程中,监控模型的性能和调整相关参数是优化模型性能的重要手段。文章随后介绍了如何评估模型性能,并给出了相应的优化建议。 本项目详细介绍了使用YOLOv8模型进行目标检测的全过程,从环境配置、数据准备、模型选择和配置、训练模型以及评估和优化,每一步都有详细的说明和代码示例,使得即便是深度学习初学者也能够依葫芦画瓢,搭建起一个高效准确的三角洲行动目标检测系统。
2026-01-31 14:15:01 21.34MB 目标检测 深度学习 数据集标注
1
本文详细介绍了基于YOLOv8训练无人机视角Visdrone2019数据集的完整流程,包括数据集介绍、YOLO格式训练集的制作、模型训练及预测、Onnxruntime推理等关键步骤。Visdrone2019数据集包含12个类别,主要用于无人机视角的目标检测。文章提供了数据集的下载链接和转换脚本,详细说明了模型训练的配置和注意事项,如显存占用、训练参数设置等。此外,还介绍了模型预测和Onnxruntime推理的实现方法,并提供了相关代码和资源链接。文章特别指出了ultralytics版本8.1.45中cache=True导致的精度问题,并提供了解决方案。 在计算机视觉领域,目标检测任务一直是一个研究热点。随着深度学习技术的飞速发展,目标检测方法也日趋成熟。YOLO(You Only Look Once)系列因其速度快、准确性高的特点,在业界广泛受到认可。YOLOv8作为该系列的最新版本,继承了前代产品的优势,并在性能上进行了进一步的优化。 Visdrone2019数据集是由无人机拍摄的一系列视频和图片组成的,它主要应用于无人机视角下的目标检测任务。该数据集覆盖了包括车辆、行人、交通标志等多种类别,共计十二个类别,为研究无人机目标检测提供了丰富的数据资源。Visdrone2019数据集不仅分辨率高,而且包含了丰富的场景变化,对于检测算法的泛化能力和准确度提出了更高的要求。 在进行模型训练之前,首先需要制作YOLO格式的训练集。这包括将原始数据集转换为YOLO能够识别和处理的格式,具体涉及数据标注、划分训练集和验证集等步骤。数据集的合理划分对于模型的训练效果有着直接的影响,训练集用于模型参数的学习,验证集则用于评估模型的泛化能力和调参。 在模型训练过程中,YOLOv8框架提供了灵活的配置选项,允许用户根据硬件资源限制调整各项参数。例如,用户可以根据自己的显存大小来调整批量大小(batch size),以达到在保持训练稳定性的同时,尽可能高效地利用计算资源。同时,训练参数的设置如学习率、优化器选择等,都会影响到训练结果和模型性能。 模型训练完成后,为了验证模型的性能,接下来会进行模型预测。预测是指使用训练好的模型对新的数据进行目标检测,通常需要一个评估指标来衡量模型的效果。在计算机视觉领域,常用的评估指标有精确度、召回率和mAP(mean Average Precision)等。 除了模型训练和预测,YOLOv8还支持将训练好的模型导出为ONNX格式,以便于在不同的平台上进行推理。ONNXruntime是一种性能优越的深度学习推理引擎,它能够支持多种深度学习框架转换而来的模型,并在不同的硬件上进行高效的推理。文章中不仅介绍了如何导出模型为ONNX格式,还详细说明了使用ONNXruntime进行推理的过程和注意事项。 值得一提的是,在使用YOLOv8进行训练的过程中,可能会遇到由特定版本中的cache参数设置不当导致的精度问题。文章作者特别指出了这一问题,并提供了一个明确的解决方案。这个问题的发现和解决,对于那些在实际操作中可能遇到同样问题的开发者来说,无疑是非常有价值的。 此外,文章还附带了Visdrone2019数据集的下载链接和转换脚本,以及相关代码和资源链接,这些资源对于研究者和开发者来说是极具参考价值的。通过这些资源,研究者不仅能够快速地构建和复现实验环境,还能够在此基础上进行更深入的研究和开发工作。 本文为基于YOLOv8训练无人机视角Visdrone2019数据集的完整流程提供了全面的介绍,涵盖了数据处理、模型训练、预测和ONNXruntime推理等多个环节。文章通过提供代码、资源链接和详细步骤,为实现高效的目标检测训练提供了实践指南,同时也为解决实际操作中遇到的问题提供了参考和解决方案。
2026-01-30 22:35:25 10KB 计算机视觉 目标检测
1
MATLAB App Designer与表格数据(excel,csv)互动
2026-01-30 10:31:14 225KB matlabapp
1
"利用Python代码实现MEMD多元经验模态分解算法:解析多变量信号并提取本征模态函数IMF",MEMD 多元经验模态分解 Python代码 MEMD是一种多元经验模态分解算法,是EMD从单个特征到任意数量特征的拓展,用于分析多变量信号并提取其本征模态函数(IMF)。 这段代码能够帮助您执行MEMD分解,并提取多个IMF,从而更好地理解您的多元时间序列数据。 代码功能: 实施MEMD算法,读取EXCEL并提取多元时间序列的IMFs。 可指导替数据。 可视化分解结果,每个特征的分量用不用颜色表示,以便分析和进一步处理。 ,MEMD; 多元经验模态分解; Python代码; 算法; 读取EXCEL; IMFs提取; 替换数据; 可视化分解结果。,Python代码:MEMD多元经验模态分解算法实现及可视化
2026-01-29 20:18:43 299KB 数据仓库
1
CoCo 2014数据集百度网盘链接。在学习使用过的 百度网盘大约26GB
2026-01-29 19:42:42 87B 数据集
1
本书《首席数据官管理手册:构建与运营企业数据供应链》由马丁·特雷德撰写,旨在为首席数据官(CDO)提供实用指南。全书分为三个主要部分,涵盖设计高效数据办公室、数据管理心理学以及数据管理的实际方面。书中不仅强调了数据作为21世纪企业核心资产的重要性,还探讨了如何通过有效的数据管理策略帮助企业应对挑战并抓住机遇。作者结合自身经验和行业最佳实践,详细介绍了数据愿景、使命和战略的制定,主数据管理,数据治理,数据语言及流程,角色与责任划分,数据质量提升,以及数据办公室团队建设等内容。此外,本书还涉及数据伦理、合规性、外部环境分析、数据处理、数据分析,以及在危机情况下的数据管理。通过丰富的案例和实用建议,本书为企业领导者提供了宝贵参考,帮助他们在数字化转型过程中建立坚实的数据基础。
2026-01-29 17:32:25 13.01MB 数据管理 企业战略
1
提出一种将USB接口和短距离无线通信相结合的无线USB高速数据传输系统的设计方案,阐述该系统的软硬件设计方案和工作原理。
2026-01-29 16:35:56 161KB 无线USBC LabVIEW NIVISA 短距离无线通信
1
LabVIEW语言是一种基于图形程序的编程语言,含有丰富的数据采集、数据信号分析以及控制等子程序,易于调试和维护,且程序编程简单、直观。可以直接在LabVIEW环境下通过NI一VISA开发驱动程序,完全避开了以前开发USB驱动程序的复杂性,大大缩短了开发周期。。本设计将利用CYWUSB6935来实现无线USB的高速数据传输系统,通过LabVIEW来简化开发过程,缩短开发周期。 【基于LabVIEW的无线USB高速数据传输系统】 无线USB(Wireless USB)是一种基于通用串行总线(USB)协议的短距离无线通信技术,它结合了USB的高速数据传输能力与无线通信的便利性。无线USB技术的核心在于提供与有线USB 2.0相当的传输速度,最高可达480 Mbps,适用于近距离(3米内)的高速数据交换。其传输距离虽不及有线USB的5米,但对家庭或办公环境内的设备连接已足够。在更远的距离(10米)下,传输速率降低至110 Mbps,仍高于常见的Wi-Fi(WLAN)标准。 CYWUSB6935是由Cypress公司设计的一款高性能无线USB芯片,集成串行数据接口、串并/并串转换器、射频收发器、调制解调器等功能,支持多种数据速率和工作模式。该芯片采用GFSK调制解调器和DSSS数字基带模块,能提供大量的独立频道,允许一个主系统连接多个外围设备,并实现较远距离的通信。CYWUSB6935有4种工作模式,其中32 chips/bit单通道双倍采样模式常用于高速数据传输系统。 LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是由美国国家仪器(National Instruments,简称NI)开发的图形化编程环境,专门用于数据采集、信号处理和控制应用。它的特点是使用图形化编程语言,即G语言,使得程序设计更为直观和易懂。LabVIEW的程序结构包括前面板(用于设置输入和显示输出)、框图程序(实现图形化编程逻辑)和图标/连结器(用于模块化编程)。用户可以通过创建子VI来实现功能复用,提高代码的可读性和可维护性。 在无线USB高速数据传输系统的开发中,LabVIEW与NI-VISA的结合发挥关键作用。NI-VISA是一个跨平台的总线通信API,支持包括USB在内的多种通信接口。通过NI-VISA,开发者可以简化USB设备驱动的开发,避免了底层驱动程序的复杂性,从而缩短开发周期。在本文的设计中,利用LabVIEW的图形化编程优势,配合NI-VISA的USB通信功能,可以快速构建无线USB数据传输系统的控制和数据处理模块,实现高效、稳定的无线数据传输。 基于LabVIEW的无线USB高速数据传输系统充分利用了LabVIEW的图形化编程便捷性和NI-VISA的通信接口管理能力,降低了系统开发难度,提升了开发效率。这种设计方法在无线通信、物联网、自动化测试等领域具有广阔的应用前景,特别是在需要高速、低延迟、易部署的短距离数据传输场合。
1