在数字通信领域,误码率(Bit Error Rate, BER)是衡量通信系统性能的重要指标,它表示接收数据中错误比特的数量占传输总比特数的比例。本主题关注的是使用MATLAB来模拟和绘制DPSK(差分相移键控)调制系统的误码率曲线。DPSK是一种相位调制技术,它通过改变连续信号的相位来传输信息,而相对于前一个信号的相位变化是关键。 DPSK误码率曲线的生成涉及到以下几个关键步骤: 1. **信号生成**:我们需要创建二进制信息序列,这通常是由随机数生成器产生的0和1序列。这些比特将被用来驱动DPSK调制器。 2. **DPSK调制**:DPSK调制是通过对参考载波进行相位偏移来实现的。对于二进制DPSK(BPSK),每个'0'对应相位0度,而每个'1'对应180度的相位偏移。在四进制DPSK(QPSK)中,会有4个不同的相位,每种相位代表两个比特的组合。 3. **加性高斯白噪声**(AWGN):为了模拟真实世界的通信环境,我们需要在信号中引入噪声。MATLAB中的`awgn`函数可以用于在信号上添加特定信噪比(SNR)水平的高斯白噪声。 4. **解调**:在接收端,解调器根据接收到的相位来恢复原始比特。DPSK解调通常涉及相位比较或鉴相器,其目的是检测连续两个符号之间的相位变化。 5. **误码检测**:通过比较原始发送比特与解调后得到的比特,我们可以计算出误码率。如果接收的比特与发送的比特不同,就计为一个误码。 6. **误码率曲线绘制**:为了得到误码率曲线,我们需要在不同的SNR水平下重复以上步骤,然后记录每个SNR下的误码率。这些数据可以使用MATLAB的`plot`函数绘制出来,横坐标是SNR,纵坐标是误码率。 在MATLAB代码`DPSK_ERROR_RATE.m`中,可以预期包含以下关键部分: - 定义初始参数,如比特长度、SNR范围和步长。 - 生成随机比特序列。 - 实现DPSK调制函数。 - 添加AWGN。 - 实现DPSK解调函数。 - 计算误码率。 - 使用循环结构遍历不同SNR值并记录误码率。 - 绘制误码率曲线。 通过分析和理解这段代码,你可以深入理解DPSK调制解调原理,并学习如何在MATLAB环境下模拟和评估数字通信系统的性能。这个过程对于通信工程的学习和研究是非常有价值的,因为它提供了对理论概念的实际应用。
2024-12-27 18:36:17 2KB matlab 数字通信
1
MATLAB代码:基于雨流计数法的源-荷-储双层协同优化配置 关键词:双层规划 雨流计算法 储能优化配置 参考文档:《储能系统容量优化配置及全寿命周期经济性评估方法研究》第三章 仿真平台:MATLAB CPLEX 主要内容:代码主要做的是一个源荷储优化配置的问题,采用双层优化,外层优化目标的求解依赖于内层优化的储能系统充放电曲线,基于储能系统充放电曲线,采用雨流计数法电池健康状态数学模型,对决策变量储能功率和容量的储能系统寿命年限进行评估;内层储能系统充放电曲线的优化受外层储能功率和容量决策变量的影响,不同的功率和容量下,储能装置的优化充放电功率曲线存在差异。
2024-10-23 14:49:11 342KB matlab
1
本文提出了一个多阶段随机规划的形式化框架,用于在多地区可再生能源生产不确定性的输电受限经济调度中,重点优化实时运营中的储运调度。该问题通过使用随机对偶动态规划方法来解决。所提出方法的适用性在一个基于2013-2014年德国电力系统太阳能和风能整合水平校准的实际案例研究中得到了证明,考虑了24小时的时间范围和15分钟的时间步长。随机解的价值相对于确定性策略的成本为1.1%,而相对于随机规划策略的完美预测价值为0.8%。分析了各种替代实时调度策略的相对性能,并探讨了结果的敏感性。
1
基于卷积神经网络-双向长短期记忆网络(CNN-BILSTM)多维时间序列预测,CNN-BILSTM回归预测,MATLAB代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-10-14 09:49:18 62KB 网络 网络 matlab
1
MATLAB代码:新能源接入的电力市场主辅联合出清 出清模型以考虑安全约束的机组组合模型(SCUC)和经济调度模型(SCED)组成。 程序基于IEEE30节点编写,并接入风电机组参与电力市场,辅助服务市场为备用市场。 出清后可得多种结果,包括机组计划,风机出力,线路功率等(详细见图)。 该程序结果正确,注释齐全,开发空间较大 运行前请确保安装yalmip和cplex gurobi等优化求解器。 使用MATLAB编写了一个程序,用于新能源接入的电力市场的主辅联合出清。该出清模型由考虑安全约束的机组组合模型(SCUC)和经济调度模型(SCED)组成。该程序基于IEEE30节点,并允许风电机组参与电力市场,同时辅助服务市场作为备用市场。运行该程序后,可以得到多种结果,包括机组计划、风机出力和线路功率等(详细信息请参考图表)。该程序的结果是正确的,注释也很完整,而且还有很大的开发空间。在运行之前,请确保已安装了yalmip和cplex/gurobi等优化求解器。 这段话涉及到的知识点和领域范围包括: 电力市场:指电力供应和需求之间的交易市场,其中包括主辅联合出清和辅助服务市场。 新能源接
2024-10-12 09:32:33 2.69MB matlab
1
山东大学数值计算实验四(matlab代码+实验报告) 1、Cholesky分解 Computer Problems P101 2.6 山东大学数值计算实验四(matlab代码+实验报告) 山东大学数值计算实验四(matlab代码+实验报告) 山东大学数值计算实验四(matlab代码+实验报告) 1、Cholesky分解 Computer Problems P101 2.6 1、Cholesky分解 Computer Problems P101 2.6
2024-09-29 15:02:07 342KB 数值计算
1
斯坦纳问题的matlab代码
2024-09-28 10:34:43 16.42MB 系统开源
1
预算matlab代码卡 推介会 该项目专注于基于NET的软件的开发。 该软件的主要兴趣在于,通过其特定的结构,可以轻松地连接不同的第三方软件(在该项目外部开发和维护),并适合于出现在耦合中的每个模型。 当前,该项目包括CArl软件的两种实现: 一个实现。 基于和的并行C ++ / MPI实现。 该软件主要在MSSMat实验室(巴黎中央高中-CNRS)开发。 接触 : 贡献者(按第一次提交的顺序):R. Cottereau,C。Zaccardi,Y。Le Guennec,D。Neron,TM Schlittler 有关安装过程和示例的更多详细信息,请参见 MATLAB实现 可以在目录MATLAB找到CArl软件的MATLAB实现。 当前,它所连接的软件包括: 1D / 2D FEM声学代码, 蒂莫申科光束代码, 弹性代码,以及 Comsol()。 安装 在使用该软件之前,您应确保使用适当的目录更新了matlab路径。 在Matlab中,运行>> addpath( genpath('install_dir_CArl/')); 您用目录CArl/的完整路径替换install_dir_CArl
2024-09-09 16:57:54 10.56MB 系统开源
1
Matlab代码verilog bchverilog MATLAB *脚本,用于为Verilog中的任意k和t生成展开的缩短的系统BCH编解码器 *需要通讯工具箱 该代码最后一次于2014年与MATLAB 2009b一起使用,这是我研究生院研究的一部分,因此您的工作量可能会有所不同
2024-09-04 10:23:14 5KB 系统开源
1
EM(Expectation-Maximization,期望最大化)算法是一种在概率模型中寻找参数最大似然估计的迭代方法,常用于处理含有隐变量的概率模型。在本压缩包中,"em算法matlab代码-gmi高斯混合插补1"的描述表明,它包含了一个使用MATLAB实现的EM算法,专门用于Gaussian Mixture Imputation(高斯混合插补)。高斯混合模型(GMM)是概率密度函数的一种形式,由多个高斯分布加权和而成,常用于数据建模和聚类。 GMM在处理缺失数据时,可以作为插补方法,因为每个观测值可能属于一个或多个高斯分布之一。当数据有缺失时,EM算法通过不断迭代来估计最佳的高斯分布参数以及数据的隐含类别,从而对缺失值进行填充。 在MATLAB中实现EM算法,通常会包含以下步骤: 1. **初始化**:随机选择高斯分布的参数,包括均值(mean)、协方差矩阵(covariance matrix)和混合系数(weights)。 2. **期望(E)步**:利用当前的参数估计每个观测值属于每个高斯分量的概率(后验概率),并计算这些概率的加权平均值,用以更新缺失数据的插补值。 3. **最大化(M)步**:基于E步得到的后验概率,重新估计每个高斯分量的参数。这包括计算每个分量的均值、协方差矩阵和混合权重。 4. **迭代与终止**:重复E步和M步,直到模型参数收敛或者达到预设的最大迭代次数。收敛可以通过比较连续两次迭代的参数变化来判断。 在压缩包中的"a.txt"可能是代码的说明文档,解释了代码的结构和使用方法;而"gmi-master"很可能是一个文件夹,包含了实现EM算法和高斯混合插补的具体MATLAB代码文件。具体代码通常会包含函数定义,如`initialize()`用于初始化参数,`expectation()`执行E步,`maximization()`执行M步,以及主函数`em_gmi()`将这些步骤整合在一起。 学习和理解这个代码,你可以深入理解EM算法的工作原理,以及如何在实际问题中应用高斯混合模型处理缺失数据。这对于数据分析、机器学习和统计推断等领域都具有重要意义。通过阅读和运行这段代码,你还可以锻炼自己的编程和调试技能,进一步提升在MATLAB环境下的数据处理能力。
2024-09-02 17:35:58 149KB
1