使用LAB颜色空间进行阴影检测 该存储库包含该论文的python实现:Ashraful Huq Suny和Nasrin Hakim Mithila,“使用LAB色彩空间从单个图像中进行阴影检测和去除”,IJCSI 2013: ://www.ijcsi.org/papers/IJCSI 我们使用LAB颜色空间来确定航空影像中阴影上的区域,可以将其用作阴影地面真相图进行分析。
2024-07-01 18:56:02 2KB computer-vision matlab aerial-imagery
1
高光谱图像小目标检测的一篇英文文献,耿修瑞和赵永超发表的。阐述了小目标检测的原理
2023-05-17 17:22:25 1.38MB target detection
1
DOTA-DOAI 抽象的 这个repo是我们团队参加DOTA相关比赛的代码库,包括旋转和水平检测。 我们主要使用基于的两阶段检测器,由和完成。 我们还推荐了一个基于张量流的,由领导。 表现 DOTA1.0(任务1) 模型 骨干 训练数据 数值数据 地图 模型链接 技巧 lr schd 数据增强 图形处理器 图像/GPU 配置 FPN ResNet152_v1d (600,800,1024)->MS DOTA1.0 trainval DOTA1.0测试 78.99 全部 2x 是的 2X GeForce RTX 2080 Ti 1 cfgs_dota1.0_res152_v1.py DOTA1.0(任务2) 模型 骨干 训练数据 数值数据 地图 模型链接 技巧 lr schd 数据增强 图形处理器 图像/GPU 配置 FPN(内存消耗) ResNet152_v1
2023-01-14 17:25:35 15.25MB remote-sensing aerial-imagery object-detection dota
1
Introducing Next Generation PlanetScope 8-band Imagery.mp4
2022-10-15 19:06:12 222.76MB 云计算 planet computer 数据集
1
基于对象的CNN(OCNN)用于卫星图像语义标记 OCNN的目标是为卫星图像的语义标记提供一种快速,准确的方法,同时保留有关地理实体的详细信息。 它旨在易于实施,以支持卫星图像映射和基准研究评估。 如果您认为这有帮助,请引用我们的作品 此外,我们还要感谢Thomas Blaschke教授,Stefan Lang教授,Dirk Tiede教授以及OBIA小组成员的宝贵建议。 笔记: 基于对象的CNN(OCNN)已经集成了逐像素CNN(PCNN)策略,因此我们放弃了Matlab版本的PCNN,因为它的效率似乎有点低。 要使用OCNN代码,您可能需要确保已经满足必要的环境。 相关的模块或软件包是: 张量流 cv2 泡菜 还应安装其他基本模块,例如numpy,scipy,PIL。 整体结构(这是原型,所以可能看起来有些碎裂): |-OCNN_main.py (improtant!)
2022-10-05 15:30:29 975KB satellite-imagery semantic-mapping ocnn Python
1
图像增强,色彩校正/恢复 EUVP数据集:,,。 (已配对和未配对的数据; FUnIE-GAN) 水下图像网:,,。 (配对数据; UGAN) UIEBD数据集:,,。 (水网) SQUID数据集: ,,。 (水下-HL) U-45:,。 (UDAE) RUIE基准:,纸张。 (RUIE-Net) 牙买加皇家港口:数据,纸张,代码。 (水甘) 虚拟潜望镜:数据,纸张。 颜色校正: 数据。 颜色恢复: 数据,纸张,代码。 TURBID数据:数据,纸张。 OceanDark数据集:数据,纸张。 SISR:单图像超分辨率 USR-248:数据,纸张,代码。 (用于2x,4x和8x训练; SRDRM,SRDRM-GAN) SESR:同时增强和超分辨率 UFO-120:数据,纸张,代码。 (用于2倍,3倍和4倍SESR和显着性预测;深度SESR) 图像分割 SUIM:数据
1
作为一种强大而有前途的统计信号建模技术,稀疏表示已广泛应用于各种图像处理和分析领域。 对于高光谱图像分类,以前的研究已经表明了基于稀疏性的分类方法的有效性。 本文提出了一种非局部加权联合稀疏表示分类方法(NLW-JSRC),以提高高光谱图像分类的效果。 在联合稀疏模型​​(JSM)中,对中央测试像素周围的不同相邻像素使用不同的权重。 一个特定的相邻像素的权重由相邻像素和中央测试像素之间的结构相似性确定,这被称为非局部加权方案。 本文采用同时正交匹配追踪技术求解非局部加权联合稀疏模型​​(NLW-JSM)。 在三个高光谱图像上测试了所提出的分类算法。 实验结果表明,该算法的性能优于其他基于稀疏性的算法和经典的支持向量机高光谱分类器。
2022-03-14 10:18:26 384KB Classification; hyperspectral imagery; joint
1
COLMAP 三维重建应用作者的博士论文,对理解 COLMAP 的实现过程有非常大的帮助,推荐阅读。
2022-02-14 01:18:26 64.03MB COLMAP SfM 三维重建
1
iSAID:用于航空影像中实例分割的大规模数据集,CVPR研讨会,2019年。 数据准备和评估代码 环境和依赖项安装 创建conda环境conda env create -f environment.yml 激活当前的工作环境source activate py_isaid 为evalaution服务器设置pycocotols- cd cocoapi/PythonAPI - make - python setup.py install 为evalaution服务器设置城市景观脚本-cd cd preprocess/cityscapesScripts cityscapesScripts- python setup.py install 为Evlaution服务器设置Detectron- cd preprocess/Detectron make 注意:opencv版本== 3.4.
2021-12-24 23:18:32 28.89MB devkit pytorch dataset aerial-imagery
1
单层感知器神经网络matlab代码基于运动图像的单通道脑电分类 Global SIP 2018接受的论文中描述了此代码。 <概述> 该存储库中的Matlab脚本确定了通道,特征和分类器的最佳组合,可最大程度地提高基于单通道EEG的运动图像BCI的分类精度。 频道:22 ch 特征: 功率谱(PS) 灰度共生矩阵(GLCM) 单通道公共空间模式(SCCSP) 分类器: 线性判别分析(LDA) k最近邻居(k-NN) 高斯混合模型(GMM) 随机森林(RF) 多层感知器(MLP) 支持向量机(SVM) 带有PS的SVM和带有SCCSP的MLP在二进制分类中显示一位受试者的分类准确度为86.6% (平均值:63.5%)。 为了进行评估,我们使用了开放访问数据集。 在使用我们的代码之前,请发送以访问数据。 <代码> 该存储库有一个主要的m.file,该文件由预处理和后处理步骤组成。 在通过预处理步骤保存特征向量之后,可以使用10倍交叉验证来计算分类精度。 另外,您可以通过更改set_config.m文件中的值来更改此框架中的每个参数。 <环境> 马尔巴布R2017a 信号处理工具箱 静力学和机
2021-12-13 20:07:54 26KB 系统开源
1