Although I wrote the first edition of this book more than 25 years ago, my goals for it remain the same. I want students to receive a solid intro- duction to the traditional topics. I want readers to come away with the view that abstract algebra is a contemporary subject—that its concepts and methodologies are being used by working mathematicians, com- puter scientists, physicists, and chemists. I want students to see the connections between abstract algebra and number theory and geom- etry. I want students to be able to do computations and to write proofs. I want students to enjoy reading the book. And I want to convey to the reader my enthusiasm for this beautiful subject.
2023-12-12 21:25:07 496KB
1
lrslibrary:用于视频中背景建模和减法的低秩和稀疏工具
2023-03-11 21:03:13 32.39MB matlab matrix matrix-factorization tensor
1
matlab马科维茨代码QMD算法 这是用于商最小度算法(QMD)的健壮Matlab代码。 在数值分析中,最小度算法是用于在应用Cholesky分解之前对对称稀疏矩阵的行和列进行置换的算法,以减少Cholesky因子中的非零数。 最小度算法经常用在有限元方法中,其中只能根据网格的拓扑而不是偏微分方程中的系数来进行节点的重新排序,从而在使用相同的网格来节省效率时各种系数值。 QMD算法的上限严格为O(n²m)。 语境 找到最佳排序的问题是一个NP完全问题,因此很棘手,因此改用启发式方法。 最小度算法是从Markowitz于1959年首次提出的用于解决非对称线性规划问题的方法中衍生出来的,下面将对此进行粗略地描述。 在高斯消除的每个步骤中,都执行行和列置换,以使枢轴行和列中偏离对角非零的数量最小。 Tinow和Walker在1967年描述了一种对称形式的Markowitz方法,Rose后来又推导了该图的图形理论形式,其中仅模拟了因式分解,这被称为最小度算法。 当存在相同程度的选择时,这种算法的一个关键方面是突破打破策略。 输入和输出 perm : the output permutatio
2022-08-06 21:02:13 19KB 系统开源
1
1. 支持向量机是机器学习和数据挖掘中最常用的预测模型之一 1. FM 允许在非常稀疏的数据下进行参数估计,而SVM则不能 2. FM具有线型复杂度,可以在原始
2022-08-04 09:00:33 584KB 毕业设计
1
【IEEE ICASSP 2022教程】非负矩阵分解的最新进展,266页ppt 自Paatero & Tapper(1994)和Lee & Seung(1999)的开创性著作引入非负矩阵分解(NMF)以来,已经过去了二十多年。此后,NMF在音频源分离、高光谱解混、用户推荐、文本信息检索、生物识别、网络分析等多个领域产生了重大影响。虽然更复杂的体系结构,比如神经网络,在一些有监督的情况下可以胜过因子分解模型,但是NMF是基于一种生成和可解释的模型,在许多情况下,这仍然是一种流行的选择,特别是对于不需要或只需要很少的训练数据的任务(例如:在无监督设置)。本教程旨在回顾过去十年在NMF方面的一些最重要的进展,重点关注NMF优化方面的最新进展(包括最先进的算法,如最大化-最小化,收敛特性,大规模实现,稀疏和时间正则化),NMF的模型选择(包括选择合适的拟合测度、秩估计)和最近的NMF扩展(包括存在异常值时的稳健NMF、可分离的NMF、正半定矩阵分解、基于NMF的排序模型)。本教程将针对没有NMF经验的初学者和在其更高级的材料中更有知识的从业者。
2022-05-29 12:05:01 13.57MB 文档资料
RobustPCA:可靠的PCA实施和示例(Matlab)
2022-04-26 23:20:22 71KB computer-vision matlab matrix-factorization admm
1
MahNMF Manhattan Non-negative Matrix Factorization code % Manhattan Non-negative Matrix Factorization. % ManhNMF: Matlab Code for Efficient Robust Manhattan NMF Solver % Reference % [1] N. Guan, D. Tao, Z. Luo, and J. Shawe-taylor, "MahNMF: Manhattan % Non-negative Matrix Factorization," arXiv:1207.3438v1, 2012. % [2] N. Guan, D. Tao, Z. Luo, and J. Shawe-taylor, "MahNMF: Manhattan % Non-negative Matrix Factorization," Submitted to Journal of Machine Learning Research, 2013. % The model is X \approx W^TH, where X, W, and H are defined as follows: % X (m x n): data matrix including n samples in m-dimensional space; % W (r x m): basis matrix including r bases in m-dimensional space; % H (r x n): coefficients matrix includeing n encodings in r-dimensional space. % Written by Naiyang Guan (ny.guan@gmail.com) % Copyright 2012-2014 by Naiyang Guan and Dacheng Tao % Modified at Jan. 28 2013 % % X : Input data matrix (m x n) % r : Target low-rank % % (Below are optional arguments: can be set by providing name-value pairs) % MAX_ITER : Maximum number of iterations. Default is 1,000. % MIN_ITER : Minimum number of iterations. Default is 10. % MAX_TIME : Maximum amount of time in seconds. Default is 100,000. % W_INIT : (m x r) initial value for W. % H_INIT : (r x n) initial value for H. % LAM_INIT : initial value of smoothness parameter. Default is 1. % MDL_TYPE : Model type (Default is 'PLAIN'), % 'PLAIN' - MahNMF (min{||X-W^T*H||_1,s.t.,W >= 0 and H >= 0}.), % 'BXC' - Box Constrained MahNMF (min{||X-W^T*H||_1,s.t.,1 >= W >= 0 and 1 >= H >= 0}.), % 'MNR' - Manifold Regularized MahNMF % (min{||X-W^T*H||_1+.5*beta*TR(H*Lp*H^T),s.t.,W >= 0 and H >= 0}.), % 'GSP' - Group Sparse MahNMF % (min{||X-W^T*H||_1+.5*beta*\sum_{g\in G}||W^[g]||_{1,p},s.t.,W >= 0 and H >= 0}.), % 'SYM' - Symmetric MahNMF (min{||X-H*H^T||_1,s.t., H >= 0}.). % ALG_TYPE : Algorithm type (Default is 'AGD'), % 'AGD' - Accelerated Gradient Descent, % 'RRI' - Rank-one Residue Iteration. % BETA : Tradeoff parameter over regularization term. Default is 1e-3. % SIM_MTX : Similarity matrix constructed by 'constructW'. % GPP_MTX : Group pattern for boundary of all groups. % TOL_INNR : Stopping tolerance of inner iterations. Default is 1e-2. % TOL_OUTR : Stopping tolerance of outer iterations. Default is 1e-3. % If you want to obtain a more accurate solution, decrease TOL_INNR or TOL_OUTR and increase MAX_ITER at the same time. % VB_OUTR : 0 (default) - No debugging information is collected. % 1 (debugging purpose) - History of computation is returned by 'HIS' variable. % 2 (debugging purpose) - History of computation is additionally printed on screen. % VB_INNR : 0 (default) - No debugging information is collected. % 1 (debugging purpose) - History of computation is returned by 'HIS' variable. % 2 (debugging purpose) - History of computation is additionally printed on screen. % % W : Obtained basis matrix (r x m). % H : Obtained coefficients matrix (r x n). % iter : Number of iterations. % elapse : CPU time in seconds. % HIS : (debugging purpose) History of computation, % niter - total iteration number spent for Nesterov's optimal % gradient method, % cpus - CPU seconds at iteration rounds, % objf - objective function values at iteration rounds, % dlta - stopping criteria of block coordinate descent. % % % >>X=rand(1000,500); % >>ManhNMF(X,10); % >>ManhNMF(X,20,'verbose',1); % >>ManhNMF(X,30,'verbose',2,'w_init',rand(r,m)); % >>ManhNMF(X,5,'verbose',2,'tol_outr',1e-5); % Note: other files 'GetStopCriterion.m', 'ApproxFunC.m', and 'wmedianf.mexw32' should be included under the same % directory as this code.
2022-03-23 20:35:03 29KB MahNMF MahNMF code
1
深矩阵分解模型 “推荐系统的深矩阵分解模型”的实现 见论文: : 要求 可以按以下要求运行此代码,但不限于: Python= 3.5.3 张量流gpu = 1.5.0 numpy = 1.14.0 + mkl 上面要求的其他安装依赖性 使用例 指令说明已在代码中明确说明。 python Model.py 后记 作为学习者,代码中可能存在一些错误。 请随时告知。
2022-02-28 10:59:05 5.74MB Python
1
非负矩阵分解(NMF)被证明是一种非常有效的分解方法,可用于数据分析中的降维,并且已广泛应用于计算机视觉,模式识别和信息检索中。 但是,NMF实际上是一种不受监督的方法,因为它无法利用有关数据的先验知识。 在本文中,我们提出了使用图拉普拉斯算子(CNMF-GL)进行约束的非负矩阵分解,该方法不仅利用了几何信息,而且还适当地使用了标签信息来增强NMF。 具体来说,我们期望图的正则化项能够保留原始数据的局部结构,同时具有相同标签和具有不同标签的数据点将具有相应的约束条件。 结果,学习的表示将具有更大的辨别力。 图像聚类的实验结果证明了该算法的有效性。
2022-02-27 19:53:22 282KB Non-negative matrix factorization ·
1
Algorithms for Non-negative Matrix Factorization
2022-01-17 16:00:19 1.07MB NMF
1