使用深度卷积网络的语义感知图像压缩 该代码是论文一部分,论文摘要在本页底部提供。 它包括三个部分: 生成感兴趣的多结构区域(MSROI)的代码(使用CNN模型。已提供了预训练的模型) 使用MSROI映射在语义上将图像压缩为JPEG的代码 训练CNN模型的代码(供1使用) 要求: 张量流 脾气暴躁的 大熊猫 Python PIL Python SKimage 有关详细的要求列表,请参阅requirements.txt 推荐: Imagemagick(用于更快的图像操作) VQMT(用于获取指标以比较图像) 目录 如何使用此代码? 生成地图 ``` python generate_map.py ``` 在“输出”目录中生成地图和覆盖文件。 如果收到此错误 ``` InvalidArgumentError (see above for traceb
1
Two-Stream-Convolutional-Networks-masterTwo-Stream-Convolutional-Networks-master
2023-04-07 15:36:35 11KB Two-Stream
1
道路分割 客观的 在自动驾驶的情况下,给定前摄像头视图,汽车需要知道道路在哪里。 在这个项目中,我们训练了神经网络,通过使用一种称为完全卷积网络(FCN)的方法来标记图像中道路的像素。 在此项目中,使用KITTI数据集实施FCN-VGG16并对其进行了培训,以进行道路分割。 演示版 (单击以查看完整的视频) 1代码和文件 1.1我的项目包括以下文件和文件夹 是演示的主要代码 包含单元测试 包含一些帮助程序功能 是带有GPU和Python3.5的环境文件 文件夹包含KITTI道路数据,VGG模型和源图像。 文件夹用于保存训练后的模型 文件夹包含测试数据的细分示例 1.2依赖关系和我的环境 Miniconda用于管理我的。 Python3.5,tensorflow-gpu,CUDA8,Numpy,SciPy 操作系统:Ubuntu 16.04 CPU:Intel:registered:Core:trade_mark:i7-68
1
Social-STGCNN:用于人类轨迹预测的社会时空图卷积神经网络 阿卜杜拉·穆罕默德·昆茜 Mohamed Elhoseiny **,Christian Claudel ** **平等建议 阅读全文,在 社会-STGCNN 我们提出了社会时空图卷积神经网络(Social-STGCNN),该模型将人类轨迹预测问题建模为时空图。 我们的结果表明,与先前报道的方法相比,最终位移误差(FDE)较现有技术提高了20%,平均位移误差(ADE)的改进比参数减少了8.5倍,推理速度提高了48倍。 此外,我们的模型具有较高的数据效率,仅使用20%的训练数据就超出了ADE指标上的现有技术水平。 我们提出了一个核函数,将行人之间的社交互动嵌入邻接矩阵中。 仅使用7.6K参数,我们的模型推断速度为0.002s /帧(500Hz)。 Citaion 您可以使用以下方法引用我们的论文: @inprocee
1
时空图卷积网络用于基于骨架的动作识别,Spatial Temporal Graph Convolutional Networks for Skeleton Based Action Recognition,2018年AAAI论文
2022-05-19 12:31:53 1.5MB 时空卷积
1
具有并行计算的卷积神经网络的C ++库(openMP,CUDA,MPI) 用法: g ++ -std = c ++ 11 -fopenmp lenet.cpp -o lenet ./lenet 这是模型的多线程版本(具有数据并行性),您可以使用以下方法更改线程数: 导出OMP_NUM_THREADS = 4 要使用MPI版本的代码,您需要使用mpic ++进行编译: mpic ++ -std = c ++ 11 -fopenmp lenet.cpp -o lenet 您可以在多节点系统上运行它! 创建自己的网络 您可以通过派生Model类并使用addLayer()方法按顺序添加所有图层来创建自己的深度神经网络类。 您还可以通过扩展ActivationLayer来引入自己的激活层。 您可以通过扩展LossFunction类来创建自定义Loss函数。 工作正在进行中 使用以下方法进
2022-05-13 18:00:15 10.98MB C++
1
图卷积网络用于高光谱图像分类 , ,,,, 该工具箱中的代码实现了 。 更具体地,其详细如下。 引文 如果此代码对您的研究有用且有帮助,请引用论文。 D. Hong,L。Gao,J。Yao,B。Zhang,A。Plaza,J。Chanussot。 用于高光谱图像分类的图卷积网络,IEEE Trans。 Geosci。 遥感,2020,DOI:10.1109 / TGRS.2020.3015157。 @article{hong2020graph, title = {Graph Convolutional Networks for Hyperspectral Image Classification}, author = {D. Hong and L. Gao and J. Yao and B. Zhang and A. Plaza and J. Chanusso
2022-05-10 20:53:01 41.38MB Python
1
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
2022-04-25 19:17:32 1.05MB 研究论文
1
1、使用网路稀疏化方法来对CNN模型进行压缩 2、能够在模型大小、运行内存和运行时间上进行优化 3、准确度的损失在接受范围
2022-01-21 11:05:40 920KB CNN modelcompress
1
UNet:使用PyTorch进行语义分割 在PyTorch中针对高清晰度图像针对Kaggle的自定义实施 。 该模型是从头开始训练的,具有5000张图像(无数据增强),并且在超过100k张测试图像上获得了0.988423(735中的511)的。 可以通过更多的培训,数据增强,微调,使用CRF后处理以及在蒙版边缘上施加更多权重来提高此分数。 Carvana数据可在上。 用法 注意:使用Python 3.6或更高版本 预言 训练好模型并将其保存到MODEL.pth后,您可以通过CLI轻松测试图像上的输出蒙版。 预测单个图像并保存: python predict.py -i image.jpg -o output.jpg 要预测多幅图像并显示它们而不保存它们: python predict.py -i image1.jpg image2.jpg --viz --no-save >
1