在探索“ops_utility-python数据分析与可视化”这一主题时,我们首先需要了解其背景知识与应用场景。OpenSees,全称为Open System for Earthquake Engineering Simulation,是一个用于地震工程模拟的开放源代码软件框架。它广泛应用于土木工程领域,特别是在结构动力分析、地震工程等方面。Python作为一种高效、简洁的编程语言,其数据分析和可视化库(如NumPy、Pandas、Matplotlib等)被广泛用于科学计算和数据处理。将Python应用于OpenSees项目中,可以大幅提升工作效率和结果的可视化质量。 在本次介绍的文件内容中,我们看到一系列以.ipynb为后缀的文件,这些是Jupyter Notebook文件,支持Python代码和Markdown文本的混合编写,非常适合于数据科学与工程实践。同时,.py后缀的文件是Python脚本文件,表明该项目可能包含了可以直接运行的Python代码。 具体来看这些文件名称,它们似乎与结构分析和地震模拟直接相关。例如,“sec_mesh.ipynb”可能涉及到结构部件的网格划分,“SDOF_dynamic_integration.ipynb”可能与单自由度系统的动态积分方法有关,“OpenSeesMaterial.ipynb”则可能专注于OpenSees材料模型的探讨。而“view_section.ipynb”和“SecMeshV2.ipynb”可能分别提供了一种可视化截面和结构网格的工具或方法。此外,“PierNLTHA.ipynb”可能聚焦于桥墩的非线性时程分析。至于“Gmsh2OPS.py”,这可能是将Gmsh软件生成的网格转换为OpenSees可以识别的格式的Python脚本。 在进行数据分析与可视化时,这些脚本和Notebook可以作为工具,用于处理OpenSees软件在进行结构模拟时产生的大量数据。Python的强大的数据处理能力可以将复杂的数据转化为易于理解的图表、图形或其他可视化形式,这对于工程师进行结构设计和安全评估至关重要。此外,良好的可视化还能帮助工程师向非专业人员展示和解释复杂的工程问题和技术细节。 LICENSE文件表明该软件或项目遵循特定的许可协议,保障了用户合法使用和共享代码。 这个项目所包含的知识点涵盖了从地震工程模拟软件OpenSees的应用、Python在数据处理与可视化中的作用,到具体文件功能的探讨。这不仅是一个交叉学科的应用实例,也是现代工程计算中的一个重要组成部分。通过学习和应用这些文件中的内容,工程师和技术人员能够更加有效地进行结构分析和地震模拟,进一步提高工程设计的安全性和可靠性。
2026-01-21 13:49:00 7.16MB python 可视化 数据分析
1
本文详细介绍了如何使用Python爬取推特(现为X)的各种数据,包括推文内容、发布时间、点赞数、转推数、评论数、用户名、用户简介等。作者蒋星熠Jaxonic分享了其设计的推特数据爬取与分析系统,重点讲解了如何应对推特的反爬机制,包括设置特殊的请求头、动态更新Referer、处理限流问题等。文章还提供了完整的代码实现,包括引入必要的包、定义爬虫类、构造请求参数、解析响应数据等关键步骤。此外,作者还介绍了如何获取推特Cookie、token等关键信息的方法,并强调了代码中设置的防限流机制。最后,文章提供了完整的代码示例,供读者参考和使用。
2026-01-21 00:56:26 15KB Python 数据采集
1
本书《Python数据工程实战指南》深入浅出地讲解了如何使用Python进行数据工程实践。全书共分为多个章节,涵盖了从基础概念到实际项目构建的各个方面。书中首先介绍了数据工程的基本概念及与数据科学的区别,随后逐步引导读者掌握使用Python设计数据模型、自动化数据管道的技能。书中还详细讲解了多种常用工具和技术,如Apache NiFi、Airflow、Elasticsearch、Kibana和PostgreSQL等,帮助读者构建高效的数据处理系统。此外,本书通过具体的项目案例,如构建311数据管道,教授读者如何从API读取数据、清洗转换数据、丰富数据并最终将其可视化。无论是初学者还是有一定经验的数据工程师,都能从中受益匪浅。
2026-01-16 17:22:09 20.88MB 数据工程 Python
1
本书系统讲解使用Python进行数据清洗的核心技术,涵盖pandas、NumPy、Matplotlib及scikit-learn等主流工具。从导入CSV、Excel、数据库到处理JSON、HTML和Spark数据,全面覆盖数据预处理流程。深入探讨缺失值处理、异常值检测、数据重塑与自动化清洗管道构建。结合真实案例与OpenAI辅助分析,帮助读者高效准备高质量数据,为后续数据分析与机器学习打下坚实基础。适合数据分析师、数据科学家及Python开发者阅读。
2026-01-16 17:20:17 34.33MB 数据清洗 Python pandas
1
本书深入讲解使用Python Polars 1.x进行高效数据处理的核心技术,涵盖数据转换、操作与分析的60多个实用食谱。内容覆盖字符串处理、列表与结构体操作、聚合计算、时间序列分析及性能优化等关键主题,适合数据工程师与分析师快速掌握Polars的强大功能。通过真实场景示例,帮助读者构建高性能的数据流水线,提升数据处理效率。配套代码开源,便于动手实践。 《Polars数据处理实战精华》这本书是对Python中高效数据处理库Polars的深入讲解。作者通过60多个实用食谱的形式,系统性地介绍了使用Polars 1.x版本对数据进行转换、操作和分析的关键技术。书中的内容既全面又实用,涵盖字符串处理、列表与结构体操作、聚合计算、时间序列分析以及性能优化等多个关键主题。 书中提供的食谱不只是停留在理论层面,而是结合了大量真实场景示例,帮助读者实际应用所学知识,构建出高效的数据流水线,并进一步提升数据处理的效率。这一点对于数据工程师和分析师来说尤为宝贵,因为这些技能直接关联到工作中的问题解决和效率提升。作者还提供了配套的开源代码,使得读者能够动手实践,加深对知识的理解和运用。 为了保障读者能够得到最新的信息和技术支持,书中还涵盖了与Polars相关的最新技术和实践方法。在当前大数据和人工智能迅猛发展的背景下,对于需要处理大量数据的专业人士来说,这本书无疑是一本实用的工具书,能够帮助他们在实际工作中达到事半功倍的效果。 《Polars数据处理实战精华》不仅是一本技术指南,还是一本能够帮助读者快速掌握Polars强大功能的教科书。它不仅能够带领读者深入理解Polars库的内在逻辑和工作机制,而且通过大量的实践案例,为读者提供了一个高效处理数据的实践框架。本书的出版,对于希望在数据处理领域更进一步的数据专业人士来说,无疑是一大福音。 此外,该书的版权信息明确指出,未经出版商的明确许可,任何人都不得擅自复制、存储或通过任何形式传输书籍内容。这不仅体现了出版方对知识产权的尊重,也保证了读者能够从正规渠道获取信息,确保知识的准确性和权威性。 出版信息显示,这本书由Packt Publishing出版社出版,首次发行于2024年8月。书籍的ISBN为978-1-80512-115-2,读者可以通过出版社官方网站www.packtpub.com获取更多关于书籍的信息。作者Yuki Kakegawa,出版社Group Product Manager为Apeksha Shetty,Book Project Manager为Farheen Fathima和Urvi Sharma,以及Senior Editor为Nazia Shaikh,这一系列专业的团队和人员的参与,确保了书籍内容的高质量和专业性。 《Polars数据处理实战精华》通过其全面的知识覆盖,实践案例的深入讲解,以及对版权信息的尊重,为数据工程师和分析师提供了一本掌握高效数据处理工具Polars的实用教材。
2025-12-26 17:05:12 53.46MB Python 数据处理
1
1. 结合业务理解和分析,分别为投保人和医疗机构构建特征; 2. 对投保人和医疗机构的行为进行特征分析; 3. 通过聚类算法发现投保人和医疗机构中存在的疑似欺诈行为。 1. 抽取医疗保险的历史数据; 2. 对抽取的医疗保险的历史数据进行描述性统计分析,分析投保人信息和医疗机构信息; 3. 采用聚类算法发现投保人和医疗机构中存在的疑似欺诈行为; 4. 对疑似欺诈行为结果和聚类结果进行性能度量分析,并进行模型优化。
2025-12-21 18:37:25 708KB python数据分析
1
影视数据分析应用统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。影视数据分析可帮助人们做出观看影视的选择及投入更合适的影视,尤其对视频管理平台有很好的帮助。影视数据分析是建立在数基础,20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。同时,在数据获取、处理和分析过程中考虑数据安全、技术经济、工程伦理、行业规范等要素。以不同流媒体电影数据为背景,通过调研、分析数据, 完成数据预处理、数据分析和数据可视化等操作,使学生掌握相关的智能数据处理与智能系统开发的知识,培养智能信息系统项目开发过程中的分析、设计和工程文档编写能力,提高工程应用能力和综合分析、解决实际问题的能力。
2025-12-20 20:51:44 119.1MB python 数据挖掘 人工智能
1
办公自动化_Python数据处理_Excel表格数据批量填充Word文档模板_基于python-docx和pandas的合同报告自动生成工具_支持图片插入和动态文件名_提供图形用户
2025-12-12 09:43:29 80.14MB
1
本文介绍了如何通过同花顺交易软件获取股票数据,并将其转换为适合量化交易的DataFrame格式。首先,通过同花顺软件的“历史成交”功能导出股票日线交易数据,并将其保存为CSV格式。随后,使用Python的pandas模块将CSV数据转换为DataFrame格式,详细说明了两种方法:一种是直接使用pandas的read_csv函数,另一种是通过CSV模块的DictReader函数读取并转换为DataFrame。此外,文章还介绍了如何处理数据中的时间列,将其作为索引,并去除日期中的星期几信息。最后,展示了如何将处理后的数据保存为CSV文件。本文为量化交易初学者提供了一种经济便捷的数据获取和处理方法。
2025-12-10 14:41:16 13KB 量化交易 Python数据处理
1
如果你的csv打开时乱码的,那么你需要另存为UTF-8 BOM。但打开csv太慢了,于是有了这个小工具: 这是一款专注于单一功能的桌面应用:将CSV文件快速转换为UTF-8 BOM编码格式。它采用了直观的拖放界面,无需复杂设置,几秒钟内即可完成转换,让数据在Excel、数据库导入工具等各类应用中正确显示,解决csv乱码问题。 主要功能 1、文件拖拽转换:用户可以直接将CSV文件拖入软件界面,简化操作流程。 2、UTF-8 BOM格式转换:自动将输入的CSV文件转换为UTF-8 BOM编码,解决csv乱码。 3、原目录输出:转换后的文件将自动保存在原文件所在的目录,命名为xxx_utf8_bom.csv。 操作步骤 1. 解压,点击exe启动工具 2. 将CSV文件拖入工具内,或点击区域选择CSV。 3. 点击“立即转换”按钮,开始转换。 4. 转换完成后,您将在原目录中找到以“_utf8_bom”结尾的新文件。
2025-12-09 15:42:13 47.99MB python 数据分析
1