介绍了上海电网概况,分析了网供负荷特性,以及近期影响上海地区负荷的因素,并使用不同的预测方法给出了中长期负荷和用电量的方案.最后针对上海地区的特点,提出了提高负荷预测准确性和应对本地区电网严峻形势的对策和建议.
2026-01-30 09:48:11 277KB 自然科学 论文
1
我们针对计划的超相对论O16 + O16和p + O16碰撞以及重型目标上的O16碰撞探索了Glauber Monte Carlo预测。 特别是,我们提出了具体的集体流量度量,这些度量大致独立于系统的水动力响应,例如从具有不同数量粒子的累积量获得的偏心率之比,或由标准化对称累积量描述的椭圆率和三角形的相关性。 我们使用O16的最先进的相关核分布,并将结果与​​不相关的情况进行比较,发现最主要的碰撞产生中等程度的影响。 我们还考虑了受伤的夸克模型,对于所考虑的措施,结果证明它与受伤的核子模型产生相似的结果。 我们的研究目的是为即将到来的实验方案奠定基础,并为可能的更详细的动力学研究(包括水动力或运输规范)提供输入。
2026-01-29 08:42:07 1.01MB Open Access
1
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)内容概要:本文围绕基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞技术展开研究,结合Matlab代码实现,重点探讨了在复杂动态环境中多无人机系统的状态估计与碰撞规避控制策略。文中利用UKF对无人机系统状态进行高精度非线性估计,提升感知准确性,并结合MPC实现未来轨迹的滚动优化与实时反馈控制,有效应对多机交互中的避障需求。研究涵盖了算法建模、仿真验证及关键技术模块的设计,展示了UKF与MPC在多无人机协同飞行中的融合优势。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事无人机控制、智能交通、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于多无人机协同任务中的实时避撞系统设计;②为非线性状态估计(如UKF)与最优预测控制(如MPC)的结合提供实践范例;③服务于高校科研项目、毕业设计或工业级无人机控制系统开发。; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解UKF的状态估计机制与MPC的优化控制过程,注意参数调优与仿真环境设置,以获得更真实的避撞效果验证。
1
预测聚类树 用于聚类图边和图节点预测的 PCT 算法的原始实现。 图的时间方面通过定义在输入变量(图节点属性)上的特征函数进行建模 有关算法的更多详细信息,请参阅 Blockeel H.、Raedt L.、Ramon J.,“聚类树的自上而下归纳”,ICML,1998 年。
2026-01-26 20:35:38 39KB Java
1
深度学习DNN正向预测神经网络与逆向设计神经网络模型 超表面参数设计 反射谱预测fdtd仿真 复现lunwen:2018 Advanced Material:A Bidirectional Deep Neural Network for Accurate Silicon Color Design lunwen介绍:利用深度学习DNN神经网络模型,实现反射谱预测与结构参数逆向设计功能 结构色体现为结构的反射谱线,构建两个DNN模型,一个用于输入结构参数,输出对应的结构色谱线参数,不需要FDTD仿真即可得到预测谱线 第二个DNN模型用于逆向设计,输入所结构色谱线参数,网络可以输出对应的结构尺寸参数,根据目标来设计结构 案例内容:主要包括四原子结构的反射谱仿真计算,以及构建结构参数与反射谱线的庞大的数据库 包括两个深度学习模型,一个是正向预测DNN模型,包括网络框架的构建,pytorch架构,网络的训练以及测试;还有一个逆向设计的DNN模型,同样包括网络的训练和预测 以及做了一个例子的对照和使用 可以随机更改参数来任意设计超表面原子的参数 案例包括fdtd模型、fdtd设计脚本、pytho
2026-01-26 18:08:22 5.24MB ajax
1
在现代工程技术中,螺栓的预紧力对于确保结构连接的可靠性和稳定性起着至关重要的作用。预紧力是指在螺栓连接中预先施加的力量,它能够防止在工作载荷作用下连接的松动和滑移。对于一些重要的机械结构,如飞机、汽车、桥梁、压力容器等,螺栓连接的安全性直接关系到整个结构的安全。因此,对于螺栓组残余预紧力的准确预测和计算成为了连接设计和质量控制的重要环节。 螺栓组残余预紧力预测软件提供了一种使用Matlab环境进行螺栓预紧力计算的便捷途径。Matlab是目前广泛使用的一种高性能数值计算和可视化软件,它为工程师和科研人员提供了一个强大的算法开发平台。使用Matlab开发的螺栓组残余预紧力预测软件,可以帮助用户方便快捷地进行复杂的数学计算和数据处理。 本软件内含详细的操作说明书,即使是对于初学者而言,也能在说明书的指导下,逐步掌握软件的使用方法。用户通过输入相关的参数,如螺栓的材料特性、尺寸、连接件的材质和厚度等,软件就能够运用内置的算法模型计算出螺栓组的残余预紧力。这对于精确控制螺栓连接的质量和性能提供了理论依据。 为了使软件具备更好的通用性和实用性,它可能采用了多种计算模型和公式,包括经典的螺栓载荷分配理论、螺栓松动和蠕变等现象的模拟。这些模型和公式经过科学验证和工程实践的检验,能够提供较为准确的计算结果。用户在操作时还可以根据实际工况进行参数的调整,使得计算结果更符合实际情况。 此外,预测软件还可能包括了后处理功能,使得计算结果能够以图形或表格的形式直观展现,便于用户分析和报告撰写。这样不仅可以提升工作效率,还能帮助设计和检测人员更直观地理解螺栓连接的力学特性。 螺栓组残余预紧力预测软件的开发和应用,是工程设计领域的一大进步。它不仅提高了螺栓连接设计的精确性和可靠性,还为螺栓连接的质量控制和监测提供了有力的工具。Matlab作为强大的数值计算平台,为这类专业软件的开发提供了可能,而该预测软件的普及和应用,无疑将推动工程技术向着更加安全和高效的方向发展。
2026-01-26 17:16:46 4.12MB matlab
1
基于CTRV轨迹预测模型的周向防碰撞系统:Carsim2019+simulink辅助驾驶安全预警研究,基于轨迹预测的周向防碰撞(Carsim2019+simulink) 辅助驾驶 安全预警 CTRV轨迹预测模型 车载激光雷达 各种危险碰撞场景下进行提前预测,并进行安全制动,实现防避障功能。 模型代码清楚简洁,方便更改使用可在此基础上进行算法的优化。 ,基于轨迹预测的防碰撞; 辅助驾驶安全预警; CTRV轨迹预测模型; 车载激光雷达; 危险场景预测; 安全制动; 防避障功能; 模型代码优化。,基于CTRV轨迹预测模型的周向防碰撞系统:激光雷达辅助安全预警与避障优化
2026-01-26 14:41:36 772KB istio
1
标题Django与深度学习融合的淘宝用户购物可视化及行为预测系统设计AI更换标题第1章引言介绍系统设计的背景、意义,分析国内外在淘宝用户购物行为预测与可视化方面的研究现状,并指出论文的方法及创新点。1.1研究背景与意义阐述淘宝用户购物行为分析对电商平台的重要性及可视化预测系统的价值。1.2国内外研究现状综述国内外在电商用户行为预测与可视化领域的研究进展及成果。1.3研究方法及创新点概述系统设计采用的方法,并突出与现有研究相比的创新之处。第2章相关理论总结和评述深度学习及用户行为预测相关理论,为系统设计提供理论基础。2.1深度学习基础理论介绍神经网络、深度学习模型及其在用户行为预测中的应用。2.2用户行为预测理论分析用户购物行为预测的原理、方法及影响因素。2.3可视化技术理论阐述数据可视化技术的基本原理、方法及应用场景。第3章系统设计详细描述基于Django与深度学习的淘宝用户购物可视化与行为预测系统的设计方案。3.1系统架构设计介绍系统的整体架构,包括前端、后端及数据库设计。3.2深度学习模型设计阐述用于用户行为预测的深度学习模型的选择、构建及训练过程。3.3可视化模块设计如何实现用户购物数据的可视化展示,包括图表类型、交互设计等。第4章数据收集与分析方法介绍系统设计中数据收集的途径、分析方法及数据处理流程。4.1数据收集途径说明从淘宝平台获取用户购物数据的具体方法和途径。4.2数据分析方法阐述采用的数据分析方法,如统计分析、机器学习算法等。4.3数据处理流程数据清洗、预处理及特征提取等数据处理步骤。第5章研究结果呈现系统设计的实验分析结果,包括预测准确率、可视化效果等。5.1预测结果分析通过图表和文本解释,展示系统对用户购物行为的预测准确率及效果。5.2可视化效果展示通过截图或视频等形式,展示系统实现的用户购物数据可视化效果。5.3对比方法分析与其他类似系统进行对比分析,
2026-01-23 10:42:48 15.3MB python django 深度学习 mysql
1
"量化金融研究:周期理论与机器学习资产收益预测" 量化金融研究中,周期理论和机器学习资产收益预测是两个重要的概念。本文将从周期理论和机器学习的角度,探讨资产收益预测的方法和应用。 周期理论是指根据经济周期状态对资产配置的原理。美林时钟模型是宏观择时模型的代表,根据经济周期状态进行资产配置。但美林投资时钟模型并不是一个实时、定量的交易策略,其有效与否的关键在于对经济周期状态的判断是否正确。 华泰金工周期系列研究通过傅里叶变换、联合谱估计等信号处理方法,发现并证实了市场中广泛存在 42 个月、100 个月和 200 个月左右的共同周期。以此为基础,提出了华泰量化投资时钟“周期三因子定价与资产配置模型”。通过计算金融资产同比序列与其周期三因子的回归拟合值、拟合值的增加值等,实现对资产周期状态比较精确且全面的测度。 机器学习是指使用机器学习算法来挖掘资产周期状态与未来市场表现的内在逻辑。机器学习模型能以概率方法建立起资产同比周期状态与未来表现间的非线性联系,并给出收益排序的概率预测。仿真测试证明本文机器学习模型对挖掘上述联系的有效性。 机器学习的基本原理是以二元分类的逻辑回归为例。机器学习模型能够挖掘资产周期状态与未来市场表现的内在逻辑,实现对收益排序的概率预测。 在实证研究中,本文采用集成学习法,计算多种可行参数组合的预测结果,采用“少数服从多数”的原则,平均后确定最终结果,降低模型对参数依赖,更全面有效的利用历史规律。 实证结果证明周期理论与机器学习的研究方法具有不同市场的普适性基于周期理论和机器学习方法预测结果的资产配置实证显示,策略应用于全球和中国市场均有较好表现。与基准的等权配置模型相比,基于周期理论和机器学习方法的策略在年化收益、最大回撤等风险收益指标均有明显提升,充分证明了机器学习能够挖掘市场周期规律并实现更加有效的预测。 周期理论和机器学习方法可以相互结合,挖掘市场周期规律,并实现更加有效的资产收益预测。该方法可以应用于全球股债资产配置,取得良好的投资回报。 风险提示:本文基于华泰金工周期系列研究对全球各类经济金融指标长达近百年样本的实证检验结果,确定周期长度。然而市场存在短期波动与政策冲击,就每轮周期而言,暂无法判断具体长度。周期长度只是估计值,可能存在偏差;历史规律存在失效风险。
2026-01-22 23:23:47 1.15MB 量化金融
1
内容概要:本文详细探讨了平行泊车和垂直泊车的路径跟踪问题,重点介绍了纯跟踪算法和模型预测算法的应用。文中不仅提供了MATLAB代码实现,还包括Simulink与CarSim的联合仿真,用于验证算法的有效性。具体来说,纯跟踪算法基于几何原理,通过分析车辆当前位置和目标路径的离散点信息,计算出下一步的行驶方向和位置;而模型预测算法(MPC)则通过构建车辆动力学模型,预测未来的车辆行为,优化行驶路径。此外,文章还涉及了泊车环境的设置,如停车场、障碍物等,以模拟不同的泊车场景。 适用人群:汽车工程专业学生、自动驾驶研究人员、车辆控制系统开发者。 使用场景及目标:适用于研究和开发自动泊车系统的技术人员,旨在提高泊车路径跟踪的精度和效率,推动自动驾驶技术的发展。 其他说明:本文提供的MATLAB代码和仿真工具可以帮助读者更好地理解和实践泊车路径跟踪算法。
2026-01-22 23:16:39 661KB
1