内容概要:本文介绍了基于STM32F103的无感FOC(Field-Oriented Control)滑膜观测器技术和SVPWM(Space Vector Pulse Width Modulation)控制的全开源C代码实现。文章详细解析了滑膜观测器的核心代码及其工作原理,特别是在不依赖传感器的情况下估算转子位置的方法。同时,文中还展示了SVPWM的具体实现方法,包括PWM配置函数的设置以及启动策略的三段式软起过程。此外,作者分享了一些调试经验和硬件设计注意事项,如MOS驱动电路的设计和采样电阻的布局优化。 适合人群:具有一定嵌入式系统开发经验的研发人员,特别是对电机控制感兴趣的开发者。 使用场景及目标:适用于希望深入了解无感FOC滑膜观测器和SVPWM控制技术的工程师,旨在帮助他们掌握低成本高性能的电机控制解决方案。通过学习本文提供的代码和调试技巧,能够更好地应用于实际项目中。 其他说明:整套代码已在GitHub上完全开源,包括完整的IAR工程和示波器抓取的波形图。对于想要尝试低成本方案并进行深入研究的开发者来说,这是一个非常有价值的参考资料。
2026-02-14 09:58:06 309KB
1
D类音频功放的1/f噪声和电压失调对信号的失真和噪声性能产生直接的影响,特别是在输入信号为零时的背景噪声最为明显,通过采用全差分斩波运放电路和T/H解调技术,有效地降低了系统的低频噪声和电压火调。流片后的对芯片的测试表明,该电路使Class-D的噪声性能有了很大的改善。
2026-02-13 17:37:32 141KB
1
本文介绍了一种基于机器学习方法的海事监视雷达海杂波抑制方法。文章首先对海杂波抑制方法进行了分类,包括传统方法(空间域处理、频域处理、基于子空间)和机器学习方法(k近邻、支持向量机、深度卷积自编码器、深度卷积神经网络、生成对抗网络)。随后详细阐述了文章提出的基于循环一致对抗网络(CycleGAN)的网络结构,包括SCSG、SCRG结构和判别器结构,以及损失函数设计(对抗性损失、循环一致性损失和目标一致性损失)。实验部分基于复合K分布模型构建了模拟海杂波数据集,并通过海杂波抑制改进因子σ和目标结构相似度(SSIM)两个指标对模拟数据和实测数据进行了对比,验证了该方法的优越性。 海事监视雷达在探测和跟踪海面上的目标时,常常会受到海杂波的影响,这会显著降低雷达系统的性能。传统上,海杂波抑制方法主要分为三类:空间域处理、频域处理和基于子空间的方法。空间域处理利用雷达天线的空间信息来区分目标和杂波,频域处理通过对信号的频率特性进行分析和滤波来实现杂波抑制,而基于子空间的方法通过提取信号的子空间来分离目标信号和杂波。然而,这些方法存在一定的局限性,如处理复杂度高、对环境变化适应性差等问题。 机器学习方法的引入为海杂波抑制带来了新的解决方案。本研究提出了一种基于循环一致对抗网络(CycleGAN)的方法。CycleGAN是一种无监督的深度学习框架,它能够通过学习不同分布数据之间的映射来实现图像到图像的转换任务。在海杂波抑制场景中,CycleGAN被用来学习雷达回波数据与杂波抑制后数据之间的映射关系。研究中构建了两种特别的网络结构,分别是SCSG和SCRG结构以及判别器结构,它们各自承担着不同的学习任务。SCSG网络负责学习生成的数据与原始数据之间的循环一致性,而SCRG网络负责将原始数据映射到目标域数据。判别器则用来区分生成数据与真实数据,以此来提升模型的生成能力。 为了验证所提方法的有效性,研究者构建了基于复合K分布模型的模拟海杂波数据集。复合K分布是描述雷达海杂波的一种常用模型,它能够较好地模拟实际海杂波的统计特性。在实验中,研究者使用改进因子σ和结构相似度(SSIM)作为评价指标。σ用于衡量杂波抑制的效果,而SSIM用于评价图像质量。实验结果表明,在模拟数据和实测数据上,基于CycleGAN的海杂波抑制方法均能有效地改善目标检测性能,不仅降低了海杂波对目标检测的干扰,还保持了目标的清晰度。 这项研究工作不仅展示了机器学习在雷达信号处理领域的应用潜力,而且为解决传统海杂波抑制方法存在的问题提供了新的思路。未来的工作可能会侧重于改进网络结构,进一步提升杂波抑制的效果以及对环境变化的适应性。同时,研究者也可关注如何将所提方法拓展到更广泛的实际应用场景中,以满足不同海事监视任务的需求。 文章详细介绍了机器学习方法在海事监视雷达海杂波抑制中的应用,从理论分析到实际实验,展示了该方法的有效性和优越性。通过对复杂海杂波环境的有效抑制,使得雷达系统在海面目标探测和跟踪方面的能力得到显著提升。研究不仅为海杂波抑制提供了新的技术方案,也为机器学习在雷达信号处理领域的进一步探索奠定了坚实的基础。
2026-02-07 14:07:47 7KB 机器学习
1
内容概要:文章详细介绍了Bainter陷波滤波器的基本结构和特点,它由多个电阻(R1-R8)和电容(C1, C2)组成,通过不同电阻比例和电容器件的组合可以灵活调整其电气性能,例如实现低通、高通或陷波响应等功能。文中强调该电路有一个显著优势——其陷波的品质因数(Q)仅取决于放大器自身的开环增益而非元件间的相互精度匹配,使得即使在外界环境变化下也能保持稳定的陷波效果,同时给出了一些具体的元件选择公式以及参数计算方法用于指导实际的设计与应用。 适合人群:电子工程技术人员、研究人员以及高校学生特别是那些从事模拟电路、信号处理研究的学习者和技术人员。 使用场景及目标:①为工程师提供有关构建具有高度稳定性的主动式陷波滤波器的知识;②帮助学者理解和掌握这种类型的滤波器背后的工作机制及其数学模型构建。 阅读建议:因为涉及到较多的技术细节与公式推导,在理解过程中需要一定的电子技术和电路基础知识支撑,因此建议在阅读时同步对照相关概念书籍或者资料辅助学习,并亲手尝试按照所提供的参数设置来实验构建类似的电路以便加深印象。
2026-01-22 15:17:30 146KB 模拟电路设计 运算放大器
1
声子晶体复能带解析:使用comsol PDE求解给定频率下的波数k,comsol PDE求解声子晶体复能带,给定频率求波数k ,comsol; PDE求解; 声子晶体; 复能带; 给定频率; 波数k,COMSOL PDE求解声子晶体复能带,求给定频率下波数k 声子晶体是一类具有周期性介电结构的复合材料,其内部的声子模式(对应于光子晶体中的光子模式)表现出特殊的色散特性,形成所谓的能带结构。这些能带中包含了实能带和复能带,复能带与材料中的波传播特性密切相关。在声子晶体的研究中,复能带的解析尤为关键,因为它涉及到波在声子晶体中的传播衰减和相位变化。 通过使用COMSOL Multiphysics这一强大的多物理场仿真软件,研究人员可以借助偏微分方程(PDE)求解器来分析声子晶体的复能带特性。具体而言,研究者可以设置一个给定的频率范围,并求解该频率下的波数k。波数k是描述波传播方向的重要参数,与频率的关系揭示了声子晶体内部波传播的复杂行为。 在仿真计算过程中,求解器需要考虑声子晶体的几何结构、材料属性等参数,从而准确计算出在特定频率下的波数k值。这一过程不仅包含了实数波数的求解,还可能涉及到复数波数的计算,以表征波在声子晶体中传播时的衰减情况。通过这种方式,研究者能够深入了解声子晶体中波的传播行为,包括波的带隙、透射、反射以及局域化等现象。 此外,声子晶体的研究不仅限于理论分析和数值计算,还包括材料的制备、实验测量和应用开发。通过实验测量得到的声子晶体的复能带特性,可以与仿真结果进行对比验证,进而优化模型参数,提高仿真的准确性。声子晶体的实际应用广泛,包括声学滤波器、声子晶体光纤、超材料、声学传感器等领域。 值得注意的是,尽管COMSOL是一个功能强大的仿真工具,但它在声子晶体复能带分析中也有局限性。例如,当声子晶体结构复杂或频率范围非常宽时,计算的复杂度会显著增加,可能导致计算资源的大量消耗。因此,优化仿真模型、选择合适的求解策略和算法对于提高计算效率至关重要。 声子晶体复能带的解析对于声子材料和声学器件的设计和应用具有重要意义。通过使用COMSOL等仿真软件,研究人员能够更深入地理解和控制声子晶体的波传播特性,从而推动相关技术的发展和应用。
2026-01-18 11:12:35 622KB gulp
1
DSP28335 永磁同步电机代码 CCS编辑,有PI控制算法、速度电流双闭环控制。 有方波有感无感算法,无感为3段反电势过零点。 有pmsm有感无感算法,有感有hall的foc,有磁编码器的,有增量编码器的。 无感为滑模观测器的。 提供原理图,源代码 DSP28335 永磁同步电机代码是一个集成了PI控制算法和速度电流双闭环控制的电机控制程序。该程序不仅支持有感和无感两种控制方式,而且还提供了方波和无感算法,其中无感算法的核心为基于三段反电势过零点的控制策略。此外,该代码还支持多种传感器配置,包括有感方式下的Hall传感器、磁编码器和增量编码器。在无感控制方式下,采用了滑模观测器技术。 PI控制算法是一种常用的比例积分控制策略,通过调节比例系数和积分系数,实现对电机转速和电流的精确控制。速度电流双闭环控制则意味着系统设置了两个控制环,内环负责电流控制,外环负责速度控制,两者相互作用以优化电机性能。 有感无感算法是指在永磁同步电机控制中,通过检测电机转子的位置信息来实施控制的策略。有感控制需要使用传感器(如Hall传感器、编码器)来获得精确的位置和速度信息;而无感控制则无需这些传感器,而是通过估算电机内部状态来实现控制,常见的无感算法包括基于反电势过零点检测的方法。 滑模观测器是一种先进的控制算法,它能够通过数学模型和电机反馈信息估算出电机的转子位置和速度,即便在无传感器的情况下也能较好地控制电机。这种观测器设计用于高动态性能的电机控制,特别适用于无感控制场景。 提供的原理图和源代码对于理解DSP28335 控制板如何实现对永磁同步电机控制是十分关键的。原理图有助于工程师和技术人员理解硬件连接和信号流,而源代码则提供了直接的参考,便于修改和适应具体的应用需求。 该代码还被详细地记录和解析在多个文档中,这些文档详细介绍了代码的功能、实现方法和应用背景。文档类型多样,包括文本文件、HTML文件和Word文档,方便不同需求的开发者查阅。这些文档中不仅包含了代码摘要、解析和分析,还可能涉及了在当前程序员社区中的探讨,以及编程的魅力。 DSP28335 永磁同步电机代码是一个功能全面、技术先进的电机控制解决方案,它融合了多种控制算法和传感器技术,既适用于要求高的工业应用,也为教学和研究提供了宝贵的资源。
2026-01-15 19:45:12 1.15MB
1
电机整流器,维也纳整流器:VIENNA(维也纳)整流器模型。 控制算法采用电压电流双环控制,电压外环采用PI控制器,电流内环采用bang bang滞环控制器。 直流母线电压纹波低于0.5%。 仿真条件:MATLAB Simulink R2015b 电机整流器,通常用于将交流电转换为直流电,是电力电子领域中不可或缺的设备。其中,VIENNA整流器模型以其高效和低噪音的特点,在高性能整流设备中占据重要地位。本模型采用的电压电流双环控制策略,是一种典型的控制方式,能够提升整流器的性能。 在VIENNA整流器模型中,电压外环控制使用的是PI控制器,其能够有效维持输出直流电压的稳定性。PI控制器全称为比例-积分控制器,其主要作用是减小输出电压的稳态误差,增强系统对负载变化的适应能力。而电流内环则采用bang bang滞环控制器,这种控制方式对电流的跟踪快速而准确,特别适用于电流控制环节。 直流母线电压纹波是衡量电机整流器性能的关键指标之一,VIENNA整流器模型将纹波控制在了极低的0.5%以下,从而大大减少了对后续电路的干扰,提升了电能的质量。 仿真条件中提到的MATLAB Simulink R2015b是MATLAB的一个附加产品,它是用于多域仿真和基于模型的设计的图形化编程环境。在电机整流器的研究和开发过程中,MATLAB Simulink提供了强大的仿真工具,能够帮助设计者在投入实际硬件之前进行详尽的测试和验证。 文件名称列表中提及的“电机整流器在电力系统中起着至关重要的作用它将交流”,说明了电机整流器在电力系统中的基础作用和重要性。电机整流器的存在,使得电力系统可以灵活地处理不同类型的电能,进而确保电能的高效转换和优化使用。 另外,“探索维也纳整流器电压电流双环控制的实践与”和“电机整流器维也纳整流器维也纳整流器模型控制算法采用”等标题暗示了文档中还包含了对VIENNA整流器及其控制算法的深入分析和实际应用探索,这对于理解和应用VIENNA整流器具有重要的参考价值。 文件中还包含了一些图片文件和相关技术分析文档,这些资料对于研究VIENNA整流器的结构、性能以及其在电力系统中的实际应用具有重要的辅助作用。 VIENNA整流器模型通过采用先进的控制算法和仿真工具,实现了高性能的电能转换,同时文件中丰富的资源也为我们提供了深入学习和研究的机会。
2026-01-13 19:27:11 252KB 哈希算法
1
表面波电磁声传感器需要电脉冲串来激励,介绍基于FPGA的多通道脉冲串信号发生器的设计方法。利用FPGA技术,可以在应用现场调节脉冲频率、改变脉冲串的占空比、改变脉冲串的长度,以期获得最大幅值的回波信号用以提高检测灵敏度。设计完成后利用仿真软件对其进行模拟仿真,验证了该方法的可行性。
2026-01-10 13:34:36 304KB 电磁超声 无损检测 FPGA
1
DAB仿真模型:双闭环单移相控制,700V输入350V可调输出,电路及波形详解,DAB仿真模型 DAB采用电压电流双闭环,单移相控制 输入电压700V,输出电压350V,输出电压可调 主电路以及输出波形如下 ,核心关键词:DAB仿真模型; 电压电流双闭环控制; 单移相控制; 输入电压700V; 输出电压350V; 输出电压可调; 主电路; 输出波形。,基于DAB仿真模型:电压电流双闭环控制下的可调输出电压研究 双闭环单移相控制的DAB仿真模型是一种应用于电力电子领域的高级仿真技术。它通过精确控制电压和电流,实现了从700V输入到350V可调输出的高效能量转换。该模型的核心在于双闭环控制策略,即同时监控电压和电流两个参数,确保输出的稳定性和响应速度。单移相控制则是指通过改变相位来控制电路的开关,这种控制方式在维持高效率和减少功率损耗方面发挥着重要作用。 DAB模型的设计非常注重电路的主电路设计及其输出波形的质量,因为这些都是影响整体性能的关键因素。700V的高输入电压要求电路具备足够的绝缘和耐压能力,同时还要能够有效地将电压降至350V,并保证输出电压的可调性,以适应不同应用场景的需求。在实际应用中,DAB仿真模型可以广泛应用于通信、电源管理等多个领域。 该仿真模型的研究不仅限于理论层面,还包括了对电路和波形的详细分析。通过构建仿真模型,研究者能够在实际搭建电路之前,对电路的行为和性能进行预测和优化。这种仿真技术通常涉及到先进的计算机软件和算法,以模拟电路在不同条件下的动态响应。 此外,DAB仿真模型的探索与实现还涉及到对控制策略的深度研究,比如如何在保持高效率的同时,实现对输出电压的精确控制。这种研究对于提高电源系统的性能、可靠性和经济性至关重要,尤其是对于那些要求高精度和高稳定性的应用场合。 在数字时代,电力电子技术正经历着快速的发展。因此,深入探讨和解析DAB仿真模型的实现技术,不仅有助于推动电力电子领域的科技创新,也为相关行业的工程师和研究人员提供了宝贵的参考。通过这种方式,他们可以更加有效地设计和优化电力系统,以满足日益增长的高性能和低功耗的需求。 在模拟电路设计和电力系统分析中,图像文件(如.jpg)提供了直观的视觉辅助,帮助工程师理解电路的结构和波形的特点。而文档文件(如.doc和.txt)则包含了丰富的理论分析和技术说明,它们是深入学习和应用DAB仿真模型不可或缺的资料。通过对这些资料的仔细研究,相关人员可以更好地掌握该模型的工作原理和设计方法,从而在实践中取得更佳的成果。
2026-01-07 09:21:49 174KB kind
1
内容概要:本文详细介绍了基于STM32F103C8T6单片机的低频波形发生器的设计与实现。硬件方面选择了高性能的DAC8563模块和LCD1602显示屏,配合定时器中断和查表法实现了正弦波、方波、三角波等多种波形的精确输出。文中不仅提供了详细的硬件选型依据,还深入探讨了核心算法的实现方法,如32位相位累加器用于频率微调、状态机管理波形切换以及运放电路的信号调理。此外,作者分享了许多实践经验,如按键消抖、频率调节、幅度调节等方面的优化技巧。 适合人群:具有一定单片机基础的研发人员和技术爱好者。 使用场景及目标:适用于电子实验室、教学演示、信号处理等领域,帮助用户理解和掌握低频波形发生器的工作原理及其应用。主要目标是通过动手实践,深入了解单片机在信号生成方面的应用,掌握波形生成的关键技术和优化方法。 其他说明:文中提供的代码示例和调试经验对于初学者非常有价值,能够帮助他们快速上手并解决问题。同时,作者还提到了一些常见的陷阱和解决方案,有助于提高项目的成功率。
2025-12-27 15:17:01 201KB
1