结合深海集矿机的实际作业环境,建立集矿机的实时避障神经网络模型。该模型采用多传感器融合技术,将声纳传感器采集到的环境信息进行处理后作为BP神经网络的输入;设定车体的注视向量、转向角和速度为网络输出;根据集矿机实际行进情况,并综合人的行走经验,设置能够实现实时避障的网络导师训练信号。引入遗传算法对已建立BP避障模型进行改进,以克服局部极小值问题。仿真研究表明:遗传算法优化后的BP神经网络,能够有效训练达到预期目标,并能在很大程度上克服BP网络的局部极小值问题。在Matlab中给出障碍物环境中的避障仿真结果,
2022-02-15 23:24:03
346KB
自然科学
论文
1