内容概要:本文主要介绍了利用Google Earth Engine(GEE)平台对2000年与2022年的土地利用/覆盖数据(LULC)进行城市化变化分析的技术流程。通过构建城市区域掩膜,计算城市扩张的净增长与总增长面积,并结合随机像素筛选方法逼近预期的净增城市面积目标。同时,区分了“无变化”、“净城市增长”和“其他变化”三类区域,并实现了可视化制图与区域统计。代码还包含用于调试的像素计数函数和面积计算函数,最终将结果导出至Google Drive。; 适合人群:具备遥感与地理信息系统(GIS)基础知识,熟悉GEE平台操作及相关JavaScript语法的科研人员或高年级本科生、研究生;有一定编程经验的环境科学、城市规划等领域从业者; 使用场景及目标:①开展长时间序列城市扩展监测与空间分析;②实现土地利用变化分类与面积统计;③支持城市可持续发展与生态环境影响评估研究; 阅读建议:此资源以实际代码为基础,建议读者结合GEE平台动手实践,理解每一步逻辑,尤其是掩膜操作、面积计算与图像合成技巧,注意参数如分辨率、区域范围的适配性调整。
2026-01-14 20:21:45 3KB Google Earth Engine 遥感影像处理
1
内容概要:本文档展示了如何利用Google Earth Engine平台收集、处理和分析Sentinel 1 GRD SAR影像,以研究巴基斯坦洪水情况。首先筛选出特定区域(巴基斯坦)、极化方式(VV)和成像模式(IW)的影像集合,并选取了2021年7月18日至8月20日作为洪水前的图像,2022年同期作为洪水后的图像。接着对选定的两期影像进行裁剪和平滑处理,计算两者之间的差异,确定洪水淹没范围为差异值小于-3的区域,并将结果可视化展示。最后,将分析得到的洪水淹没图导出到Google Drive中。; 适合人群:遥感数据处理与分析人员,尤其是关注灾害监测的研究者或从业人员。; 使用场景及目标:①通过SAR影像分析洪水前后地表变化;②掌握Google Earth Engine平台的基本操作,包括影像筛选、裁剪、平滑处理及差异分析;③学习如何将处理结果导出以便进一步研究或报告。; 阅读建议:由于涉及到具体的代码实现,建议读者熟悉JavaScript语言以及Google Earth Engine API的使用方法,在阅读时可同步运行代码,以便更好地理解每个步骤的作用。
2026-01-14 11:58:36 2KB 遥感影像处理 地理信息系统 Earth
1
内容概要:本文是一段用于Google Earth Engine(GEE)平台的JavaScript代码脚本,主要实现了对研究区域(AOI)内2024年Landsat 8卫星影像的获取、预处理与分析。首先定义了一个地理范围矩形区域,随后加载了Landsat 8地表反射率数据集,并按空间范围、时间范围和云覆盖率进行筛选。接着通过自定义函数对影像应用缩放因子校正,生成中值合成影像并裁剪到研究区。在此基础上,计算归一化植被指数(NDVI)和归一化水体指数(NDWI),并对结果进行二值分类:NDVI ≥ 0.2 判定为植被,NDWI > 0.3 判定为水体。最后将原始影像、NDVI、NDWI及其分类掩膜可视化展示在地图上。; 适合人群:具备遥感基础知识和一定GEE平台操作经验的科研人员或学生,熟悉JavaScript语法者更佳;适用于地理信息、环境监测、生态评估等领域从业者。; 使用场景及目标:①实现遥感影像自动批量处理与指数计算;②开展植被覆盖与水体分布的快速提取与制图;③支持土地利用分析、生态环境变化监测等应用研究; 阅读建议:建议结合GEE平台实际运行该脚本,理解每一步的数据处理逻辑,可调整参数(如阈值、时间范围)以适应不同区域和研究需求,并扩展至多时相分析。
2026-01-06 11:32:32 3KB Google Earth Engine JavaScript
1
内容概要:本文档提供了Landsat-7 SLC-off影像空隙填充算法的实现代码。SLC-off是Landsat-7卫星扫描仪的一个故障,导致成像时出现条带状的缺失数据。该算法基于美国地质调查局(USGS)的L7 Phase-2空隙填充协议,使用Google Earth Engine (GEE) 平台进行实现。代码首先定义了一些参数,如最小和最大缩放比例、最少邻近像素数量等。接着,通过定义`GapFill`函数来实现主要的空隙填充逻辑。该函数接收源影像和填充影像作为输入,并利用核函数计算两个影像之间的共同区域,再通过线性回归计算缩放因子和偏移量,对无效区域进行处理,最后应用缩放和偏移并更新掩膜,完成空隙填充。此外,还展示了如何使用该函数对两幅具体的Landsat-7影像进行处理,并将结果可视化显示。; 适合人群:对遥感影像处理有一定了解的研究人员或开发者,特别是那些熟悉Google Earth Engine平台及其JavaScript API的人群。; 使用场景及目标:①适用于需要处理Landsat-7 SLC-off影像的研究或项目;②帮助用户理解如何在GEE平台上实现影像空隙填充算法;③为用户提供一个可复用的代码示例,以便根据具体需求调整参数或扩展功能。; 阅读建议:读者应先熟悉Landsat-7 SLC-off现象及其对影像质量的影响,以及GEE平台的基本操作。在阅读代码时,重点关注`GapFill`函数内部的工作流程,特别是如何通过线性回归计算缩放因子和偏移量,以及如何处理无效区域。同时,可以通过修改输入影像和参数值来探索不同情况下的空隙填充效果。
2025-12-13 23:03:34 4KB 遥感影像处理 Landsat Google Earth
1
内容概要:本文详细介绍了利用Google Earth Engine (GEE) 平台进行遥感数据分析的完整流程。首先,定义了研究的时间范围(2024年全年)和感兴趣区域(AOI),并设置了一个云掩膜函数来去除影像中的云和云阴影干扰。接着,从Landsat 8卫星影像集中筛选符合条件的影像,并对每个影像进行了预处理,包括计算归一化植被指数(NDVI)和地表温度(LST)。然后,通过线性回归方法确定了NDVI与LST之间的关系,进而计算了土壤湿度指数(TVDI)。最后,对样本点进行了统计分析,绘制了散点图,并计算了皮尔逊相关系数,同时将结果导出为CSV文件。 适合人群:具有遥感数据处理基础知识,特别是熟悉Google Earth Engine平台操作的研究人员或工程师。 使用场景及目标:①学习如何在GEE平台上处理Landsat 8影像;②掌握云掩膜技术的应用;③理解NDVI和LST的计算方法及其相互关系;④探索TVDI作为干旱监测指标的有效性;⑤了解如何进行数据可视化和统计分析。 阅读建议:由于涉及到多个步骤和技术细节,建议读者按照文中提供的代码顺序逐步执行,并尝试调整参数以观察不同设置下的效果变化。此外,对于不熟悉的地理信息系统概念或术语,可以通过查阅相关资料加深理解。
2025-12-06 20:35:53 3KB 遥感数据处理 JavaScript Earth
1
目标边界约束下基于自适应形态学特征轮廓的高分辨率遥感影像建筑物提取
2025-12-01 17:16:22 768KB 研究论文
1
9.10 多范围波谱特征拟合 Multi Range SFF选项允许对用于ENVI多范围波谱特征拟合制图方法的波谱范围进行限定和编辑。波 谱信号通常表现为多个吸收特征。多范围波谱特征拟合功能允许围绕每个端元的吸收特征定义多个不同的 波长范围。每个范围都被交互式的限定,并绘制包络线去除的吸收特性。也可以选择把权重引入计算,从 而使重要特征被重视起来。限定的波长范围可以被保存到一个文件中,以备再次使用(详细介绍,请参阅 第418页的“多范围波谱特征拟合”)。 提示:要运行多范围波谱特征拟合功能,选择Spectral >Mapping Methods >Multi Range SFF。 (1) 限定新的波谱范围 选择Spectral > Multi Range SFF >Define New Range。选择所需的波谱库,然后点击“OK”。通过在列 表中点击波谱名,从波谱库中选择所需的端元波谱。使用“Ctrl”键可以选择多个波谱,点击“OK”。将 出现Edit Multi Range SFF Endmember Ranges对话框,其中显示所选端元的列表。点击端元名,将出现相 应波谱。 使用第418页“多范围波谱特征拟合”中描述的方法,选择要在波谱特征拟合时使用哪些波谱范围。 键入一个输出文件名并点击“OK”。可以将这些波谱范围应用于多范围波谱特征拟合制图工具中。 (2) 编辑先前定义的波谱范围 选择Spectral > Multi Range SFF >Edit Previous Range。选择SFF参数文件名。点击端元名,将出现相 应的波谱和先前定义的范围。使用第418页“多范围波谱特征拟合”中描述的方法,编辑波谱范围。点击 “OK”来更新参数文件。可以将这些波谱范围应用于多范围波谱特征拟合制图工具中。 9.11 波谱运算 Spectral Math TM 功能是一种灵活的波谱处理工具,它允许用数学表达式或IDL程序对波谱(以及选择 的多波段图像)进行处理。波谱可以来自一幅多波段图像(即一个Z剖面)、波谱库或ASCII文件(参见 第190页的“Z剖面提取”、第382页的“打开波谱库”以及第300页的“从波谱库输入波谱”)。如果已经 打开了一幅或多幅图像,且波段数与其中一个显示的波谱的维数相匹配,这些图像也可以被处理。如果波 段数和波谱维数相匹配,波谱运算也可以将数学表达式应用到多波段图像的所有波段中去。
2025-11-17 16:10:46 29.8MB 遥感影像
1
内容概要:本文档介绍了利用Google Earth Engine平台计算Landsat 8和Landsat 9卫星影像的叶面积指数(LAI)的方法。首先定义了时间范围为2022年到2024年,并设置了云量覆盖小于10%的筛选条件。然后通过影像集合操作,对每个影像进行了波段选择、反射率转换、NDVI(归一化植被指数)、EVI(增强型植被指数)计算,最终基于EVI得到LAI。为了确保数据的时间连续性和完整性,以8天为间隔创建了时间序列,并对每个时间段内的最大值进行合成,同时去除了无有效数据的影像。最后,绘制了LAI和NDVI的时间序列图表,以便于分析特定区域在指定月份内的植被变化情况。 适合人群:从事地理信息系统、遥感科学或生态学研究的专业人士,以及对植被动态监测感兴趣的科研工作者。 使用场景及目标:①用于研究植被生长周期与环境因素之间的关系;②评估不同季节或年度间的植被覆盖变化;③为农业、林业管理和环境保护提供科学依据。 其他说明:此文档提供了详细的代码示例,用户可以根据自身需求调整参数设置,如时间范围、空间范围和云量阈值等,以适应不同的研究目的。此外,建议用户熟悉Google Earth Engine平台的基本操作和Python/JavaScript编程语言,以便更好地理解和应用这些代码。
2025-10-13 21:45:27 2KB 遥感影像处理 LANDSAT NDVI Leaf
1
该ppt按照遥感卫星简述、人工智能技术、智能遥感解译、总结与展望,主要介绍了 从数据到应用实现智能解译一体化、遥感卫星、数据源、样本库、人工智能中的深度学习及遥感解译解译算法(语义分割、目标识别、变化检测),并根据具体的算法进行说明。ppt共计40页,设有不同的动画,该PPT也可作为学术会议的模板,该ppt模板非本人成果,内容才是。忘悉知。
2025-08-28 01:16:06 50.18MB 人工智能 遥感解译 卫星数据
1
遥感影像图质量的评价研究近些年主要集中在色彩质量评价及影像质量评价上,并有部分评价软件推出。笔者在研究的基础上,设计了遥感影像质量评价体系,提出了影像质量评价二级指标及相应权比,介绍了几何质量、色彩质量评价原理,最后设计并实现了遥感影像质量评价系统,并选择6种遥感影像图进行了色彩质量评价试验,以机助形式实现了半自动化的影像生产质量定量评价。结果表明:系统具有操作简单,定量客观等特点,可应用于遥感影像质量评价实践。
1