基于粒子群算法的储能优化配置:成本模型分析与最优运行计划求解,基于粒子群算法的储能优化配置:成本模型与最优运行计划求解,MATLAB代码:基于粒子群算法的储能优化配置 关键词:储能优化配置 粒子群 储能充放电优化 参考文档:无明显参考文档,仅有几篇文献可以适当参考 仿真平台:MATLAB 平台采用粒子群实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:建立了储能的成本模型,包含运行维护成本以及容量配置成本,然后以该成本函数最小为目标函数,经过粒子群算法求解出其最优运行计划,并通过其运行计划最终确定储能容量配置的大小,求解采用的是PSO算法(粒子群算法),求解效果极佳,具体可以看图 代码属于精品代码 ,关键词:MATLAB代码;储能优化配置;粒子群算法;PSO算法;充放电优化;成本模型;运行计划;容量配置成本;优化求解。,基于MATLAB的PSO算法储能优化配置与充放电策略研究
2025-04-09 13:17:28 1.64MB
1
点云技术是三维计算机视觉领域中的重要组成部分,它涉及到数据采集、处理、分析以及应用等多个环节。本资源包“经典点云数据集+点云+点云处理算法”提供了斯坦福大学的一系列经典点云模型,对于研究和开发点云处理算法的人员来说,是一个非常有价值的参考资料。 我们要理解什么是点云。点云是由一系列空间坐标点组成的集合,这些点在三维空间中代表物体的表面信息。通过激光雷达(LiDAR)、RGB-D相机等设备,我们可以获取到这些三维点的数据,用于构建物体或环境的三维模型。点云数据集则是一批经过整理和标注的点云数据,用于训练和测试各种点云处理算法。 在本数据集中,包含了九个点云模型,它们以PLY和PCD两种格式提供。PLY是一种基于文本或二进制的3D模型文件格式,常用于存储点云数据和相关的几何与颜色信息。PCD是Point Cloud Library(PCL)项目中的文件格式,同样用于存储点云数据,且支持压缩,便于数据传输和存储。这两种格式都广泛应用于点云处理领域。 点云处理算法主要包括点云的预处理、特征提取、分割、配准、重建等多个步骤。预处理通常涉及去除噪声、滤波和平滑等操作,以提高数据质量。特征提取则是识别点云中的关键点、边缘或表面,为后续的分类、识别任务提供依据。分割是将点云划分为不同的区域或对象,而配准则涉及到对多个点云进行空间对齐,以便进行比较或融合。通过点云数据可以重建出高精度的三维模型。 利用这个数据集,可以进行如下的算法实验: 1. **滤波算法**:如Voxel Grid滤波、Statistical Outlier Removal(SOR)滤波、Radius Outlier Removal等,以去除噪声点。 2. **特征提取**:如SHOT、FPFH、PFH等特征,用于识别点云中的局部结构。 3. **分割算法**:例如基于密度的区域生长、基于聚类的分割或基于图割的方法,将点云分为不同的部分。 4. **点云配准**:使用ICP(Iterative Closest Point)或其变种,实现两个点云之间的精确对齐。 5. **三维重建**:如多视图立体匹配或基于点云的表面重建,生成高质量的3D模型。 通过对比不同算法在这些标准数据集上的表现,可以评估算法的性能,为算法优化和新算法设计提供依据。此外,这些数据也适用于深度学习模型的训练,如点云分类、分割和目标检测等任务。 这个数据集为点云处理的研究者和开发者提供了一个丰富的实践平台,有助于推动点云技术的发展和应用,无论是在自动驾驶、机器人导航、建筑建模还是虚拟现实等领域,都有着广泛的应用前景。
2025-04-09 11:32:17 765.22MB 数据集
1
这里只做演示,都是获得老师高度认可的设计,有完整数据库,源码和文档,简单配置一下就可以用
2025-04-09 01:04:42 3.9MB 毕业设计 Python Django
1
动态窗口法(DWA)是一种用于移动机器人避障的算法,特别是在小车类的移动机器人中应用广泛。它能够实时处理机器人的运动规划和避障任务,是智能小车在复杂环境中的导航与定位的关键技术之一。DWA算法的核心思想是在机器人当前速度的基础上,动态地规划出一段短时间内的速度增量,使得机器人能够平滑地绕开障碍物,并且向着目标方向移动。 在仿真环节中,通过Matlab这一强大的数学计算和仿真平台,可以构建小车避障的仿真模型。Matlab不仅提供了丰富的数学运算和图形处理功能,而且其Simulink模块还可以用于构建动态系统的仿真模型,使得开发者能够直观地观察到小车在虚拟环境中的避障表现。在Matlab环境下使用DWA算法进行仿真,通常需要考虑的因素包括小车的运动学模型、环境地图、目标位置、以及障碍物的分布情况。 在设计DWA算法时,需要关注以下几个关键的步骤: 1. 确定运动学模型:需要根据小车的实际结构设计其运动学模型,通常使用差分驱动模型进行简化处理,以便于计算小车的速度和转向。 2. 环境建模:在仿真环境中建立小车运动的场景,包括设定目标点、障碍物的形状和位置,以及环境边界等。 3. 动态窗口生成:在每个控制周期内,根据小车当前的速度和加速度约束,计算出在极短时间内可实现的所有速度组合,形成一个动态窗口。 4. 评价函数构建:构建一个评价函数来评估每个速度组合的优劣,通常会考虑目标距离、避障能力、运动平滑度等多个指标。 5. 选择最优速度:根据评价函数的计算结果,选出最优的速度组合,使得小车既能避开障碍,又能尽快地向目标移动。 6. 重复执行:在每个控制周期重复上述步骤,直至小车成功避开所有障碍物并到达目标点。 在实际应用中,DWA算法的性能会受到许多因素的影响,例如动态窗口的大小、评价函数的设计、实时计算能力等。此外,DWA算法需要进行大量的参数调整和测试,以确保在不同的场景下都能有良好的表现。在Matlab环境下进行仿真,可以方便地修改和调整这些参数,并直观地观察到算法性能的变化。 通过Matlab仿真,不仅可以验证DWA算法的可行性,还可以在没有实际硬件的情况下,对算法进行调试和优化。这在机器人的研发过程中具有重要的意义,可以节约大量的时间和成本。随着机器人技术的不断进步,DWA算法也在不断地被改进和完善,以适应更多样化和复杂的环境。 此外,DWA算法的研究和应用不仅仅局限于小车避障。在无人机、自动驾驶汽车等领域的运动规划中,动态窗口法也被广泛地研究和应用。通过不断地探索和创新,DWA算法有望在未来的智能交通系统中扮演更为重要的角色。 DWA算法是机器人运动规划中的重要技术,Matlab仿真为DWA算法的研究和应用提供了强有力的支持。通过合理的模型设计和参数调整,可以使得小车在复杂环境中的避障性能达到预期的效果。
2025-04-09 00:21:39 1.57MB Matlab
1
《基于改进动态窗口DWA模糊自适应调整权重的路径规划算法研究及其MATLAB实现》,《基于改进动态窗口DWA的模糊自适应权重调整路径规划算法及其MATLAB实现》,基于改进动态窗口 DWA 模糊自适应调整权重的路径基于改进动态窗口 DWA 模糊自适应调整权重的路径规划算法 MATLAB 源码+文档 《栅格地图可修改》 基本DWA算法能够有效地避免碰撞并尽可能接近目标点,但评价函数的权重因子需要根据实际情况进行调整。 为了提高DWA算法的性能,本文提出了一种改进DWA算法,通过模糊控制自适应调整评价因子权重,改进DWA算法的实现过程如下: 定义模糊评价函数。 模糊评价函数是一种能够处理不确定性和模糊性的评价函数。 它将输入值映射到模糊隶属度,根据规则计算输出值。 在改进DWA算法中,我们定义了一个三输入一输出的模糊评价函数,输入包括距离、航向和速度,输出为权重因子。 [1]实时调整权重因子。 在基本DWA算法中,权重因子需要根据实际情况进行调整,这需要人工干预。 在改进DWA算法中,我们通过模糊控制实现自适应调整,以提高算法的性能。 [2]评估路径。 通过路径的长度和避障情况等指标评估路
2025-04-09 00:13:40 1.05MB rpc
1
基于FPGA的图像中值滤波算法实现与效果对比——以Verilog编程和Lenna图像为例,基于FPGA的Verilog中值滤波算法实现与MATLAB验证报告——以Lenna图像为例,效果对比展示,基于FPGA的图像中值滤波算法实现。 在vivado上用verilog实现。 仿真模型用lenna典型图像,500×500分辨率。 包含matlab验证程序。 图三显示了FPGA实现的滤波效果和matlab滤波效果的对比。 ,基于FPGA的图像中值滤波算法实现; Verilog实现; Lenna典型图像; 500x500分辨率; Matlab验证程序; 滤波效果对比。,基于FPGA的Verilog中值滤波算法实现:Lenna图像500x500分辨率对比验证
2025-04-08 19:56:13 898KB csrf
1
行人检测技术是计算机视觉领域中的一个重要应用,其目的在于通过算法自动识别图像或视频中的人体轮廓,并对其进行定位与跟踪。随着智能交通和安防监控系统的发展,行人检测技术在实际应用中显得愈发重要。Yolo(You Only Look Once)是一种流行的实时对象检测系统,以其速度快、准确性高而闻名,被广泛应用于各种检测任务中。 Citypersons数据集是为行人检测任务而构建的一个大型数据集,它包含了来自不同城市街道场景的大量标注行人图片。这些图片被采集自真实的街头场景,并经过仔细的标注,为行人检测算法的开发和测试提供了坚实的基础。 将Citypersons数据集转换为Yolo格式,意味着这些数据能够直接用于Yolo算法的训练。Yolo格式通常包括了图片文件和对应的标注文件,标注文件中包含了每个目标对象的位置信息和类别信息。在Yolo格式中,位置信息通常用边界框的中心点坐标(cx, cy)、宽度(w)和高度(h)来表示。同时,Yolo格式也支持多种图像格式,如.jpg、.png等,这使得数据集具有较好的兼容性和灵活性。 转换为Yolo格式后的Citypersons数据集,不仅能够满足Yolo算法的输入要求,而且能够方便研究人员和开发者进行模型的训练和验证。利用这一数据集,开发者可以在限定时间内完成大量数据的快速处理,同时也能够在数据集的不同子集上进行交叉验证,以获得更为稳定和可靠的训练结果。此外,Yolo格式的数据集还有助于算法的实时部署,因为在实际应用中,检测速度和准确性往往是至关重要的指标。 在转换Citypersons数据集为Yolo格式的过程中,需要确保标注信息的准确性,因为任何标注错误都可能导致算法训练效果不佳。转换工作通常涉及到编写脚本或者程序,该程序能够读取原始的标注信息,并将其转换为Yolo格式所需的标注信息。这一过程可能包括将原本的矩形边界框转换为相对位置和尺寸的表示,或者处理图片的尺寸以满足Yolo模型的输入要求。 Citypersons数据集转换为Yolo格式的举措,为那些希望利用Yolo算法进行行人检测研究的学者和工程师们提供了便利。这种转换不仅增强了数据集的可用性,也为提高行人检测系统的性能奠定了基础。随着技术的不断进步,我们有理由相信,基于Yolo的行人检测技术将在未来的智能交通和安全监控领域中发挥更大的作用。
2025-04-08 17:56:02 866KB 行人检测 yolo算法
1
基于灰狼优化算法的机器人三维路径规划:mp-GWO与CS-GWO算法对比及详细代码注释,三维路径规划:基于灰狼改进算法的MP-GWO与CS-GWO机器人路径规划算法对比,内含详细代码注释,三维路径规划 基于灰狼改进算法的机器人路径规划mp-GWO和CS-GWO机器人路径规划算法 自由切GWO,CS-GWO算法进行对比。 内涵详细的代码注释 ,三维路径规划; 灰狼改进算法; 机器人路径规划算法; mp-GWO; CS-GWO; 算法对比; 代码注释,基于灰狼优化算法的三维机器人路径规划研究:mp-GWO与CS-GWO算法的对比与代码详解
2025-04-08 16:24:47 1.09MB 数据结构
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-04-08 16:19:52 3.07MB matlab
1
SPI+Flash下载算法设计通用版是一种专门用于编程固件到Flash存储器的技术方案,它结合了串行外设接口(SPI)通信协议和Flash存储技术。在嵌入式系统和微控制器编程领域,Flash存储器被广泛用于存储程序代码和数据。为了将新固件下载到目标设备中,开发者需要设计一套有效的下载算法,以确保固件能够正确无误地传输和写入Flash存储器。 通用版的SPI+Flash下载算法设计考虑到了多种Flash存储器的特性和编程需求,旨在提供一种灵活且高效的方法来更新设备固件。该算法通常包括以下几个关键步骤:首先是初始化通信接口,确保微控制器与Flash存储器之间可以进行数据交换;其次是擦除Flash存储器中即将写入新固件的区域,这一步骤是为了清除原有的数据,防止数据冲突和损坏;接下来是编程过程,将数据通过SPI接口按页或按扇区写入Flash存储器;最后是验证过程,确保写入的数据与原始固件文件完全一致。 下载算法的通用性意味着它不仅仅适用于特定型号或品牌的Flash存储器,而是能够适用于多种不同厂商的设备,只要这些设备支持SPI通信协议。为了实现这一点,通用版算法需要能够识别不同Flash存储器的特定属性,包括存储容量、读写时序、页大小等,并且能够适应不同的硬件平台和微控制器。因此,设计时需要考虑到抽象层和驱动程序的灵活性,以便能够在不同的硬件配置中运行。 此外,该下载算法设计还可能包括错误检测和恢复机制,以便在通信失败或编程过程中出现错误时能够及时发现并采取措施。例如,算法可能会实现循环冗余检查(CRC)或其他校验机制来检测数据传输的完整性,以及包含一些命令序列来确保Flash存储器正确响应。 在实际应用中,SPI+Flash下载算法设计通用版通常被实现为固件或软件中的一个模块,嵌入到设备的启动加载程序(Bootloader)中。当需要更新固件时,设备会启动到Bootloader模式,然后通过SPI接口接收新的固件数据,并按照下载算法的要求进行处理。这个过程可能会通过USB、串口或其他通信接口由外部设备触发,或者通过网络接口远程完成。 为了优化下载过程,算法设计可能还会涉及到压缩技术。在将固件数据发送到目标设备之前,可以先对其进行压缩,以减少传输所需的时间和带宽。目标设备在接收到压缩数据后,会通过内置的解压缩算法将数据还原,然后按照正常的下载流程写入Flash存储器。这种方法特别适合于资源受限的嵌入式系统,因为它们通常具有有限的存储空间和处理能力。 SPI+Flash下载算法设计通用版的开发和应用,不仅展示了嵌入式系统软件开发的复杂性和技术深度,也体现了软件工程在确保产品质量和可靠性方面的重要性。通过精心设计和严格测试,这样的算法能够大幅提高固件更新的效率和成功率,减少设备故障和维护成本,对现代电子产品的生产和维护具有重大意义。
2025-04-08 16:19:25 1.76MB
1