主要内容:本文详细介绍了在MATLAB环境中通过鲸鱼优化算法(WOA)来优化卷积长短期记忆网络(CNN-LSTM)以实现高效的数据分类与预测的方法。项目不仅提供了理论概述和设计思路,还包含了完整代码及合成数据样本。涵盖了从基础知识到模型优化的设计流程。 适合人群:对于深度学习及机器学习感兴趣的研究员和工程师。 使用场景及目标:适用于各种类型数据的分类及预处理,在需要进行复杂数据集处理的情况下能提供更好的预测效果。 其他说明:文中给出了详细的设计指导和具体的执行脚本,方便读者理解和实践。同时,项目允许在特定应用场景下定制和调参,增强了方法的实用性。
2024-11-18 17:13:49 37KB 鲸鱼算法 MATLAB环境
1
内容概要:该文档介绍了使用YOLOv11与OpenPose相结合来开发的一个摔倒姿态识别系统的设计与实现细节。系统主要特征体现在高速精准检测物体及人体姿态的能力上,同时还通过数据增强等方式提升了模型性能,在软件界面上也实现了易用性和人性化设置。 适用人群:面向计算机视觉领域的研究和开发者以及对图像分析有兴趣的专业技术人员。 使用场景及目标:适用于老年人照护中心、医院等公共场所的安全监视系统,能够在人发生摔倒的情况下快速作出反应。 其他说明:提出了未来的改进方向如集成智能警报和实时摄像头检测等功能模块以拓展系统实用价值。
1
内容概要:本文介绍了基于YOLOv11的人员溺水检测告警监控系统,详细描述了项目的实施背景、特点及相关参考资料等内容。具体实现上,通过使用YOLOv11模型对从摄像头获得的视频流实现实时的人类溺水监测,同时提供有友好的GUI用于交互操作,在出现异常情况后能够及时做出反应并通过音频或短信的方式发出警告提示。 适合人群:专注于水域安全的专业人员和技术开发者。 使用场景及目标:适用于需要实时监视溺水事故的各种场景,包括游泳池、湖滨及海岸线等等。 阅读建议:为了更好地掌握该技术的设计思路及其应用场景的具体细节,鼓励深入探讨与实践相关内容。
2024-10-31 00:55:35 48KB 深度学习 目标检测
1
主要内容:这篇文档展示了怎样在MATLAB环境中利用双向门控循环单元(BiGRU)建立模型,进行时间序列的数据预测。详细地介绍了创建时间系列样本集,BiGRU模型配置、构造和参数设定的过程,同时演示了使用提供的数据执行预测并呈现实际和预测值对比的方法. 适合人群:适合熟悉基本MATLAB用法,有一定机器学习基础知识的专业人士。 使用场景及目标:对于想要在时间和经济序列分析上得到更好的预测结果的技术研究者和从业者来说是有意义的学习与实验工具。 其他说明:本文提供了一份包含详尽的注释说明以及所需的数据的实用BiGRU时间序列预测脚本,便于快速启动项目的实操者学习。
1
PSM-DID, DID, RDD, Stata保姆级程序和数据百科全书式的宝典,含教学视频及实例数据,可自行学习,冲冲冲!!! 由于数据过大,保存至百度网盘,打开word可自行保存,永久有效!!!
2024-03-27 14:32:05 10KB 示例数据
1
1.输入多个特征,输出单个变量; 2.考虑历史特征的影响,多变量时间序列预测; 4.excel数据,方便替换; 5.运行环境Matlab2018b及以上; 6.输出R2、MAE、MBE等评价指标。
2023-11-20 14:49:45 685KB matlab
1
基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 运行环境Matlab2018b及以上。
基于ANFIS的时间序列预测(Matlab完整程序和数据) 基于ANFIS的时间序列预测(Matlab完整程序和数据
基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。
基于元胞自动机模拟和遗传算法改进的动态网络分配模型分析(Matlab完整程序和数据) 元胞自动机模拟,遗传算法改进,动态网络分配模型分析,Matlab完整程序和数据。 元胞自动机,遗传算法是很久之前就提出的模型,受碍于计算设备的局限,经过实践的证明,如今才应用于本领域也是非常有用的工具。 NaSch模型与NSGA—II算法结合,在对交通网络基于完善规则的模拟的情况下,应用恰当的算法可以对交通网进行一定程度的优化。