内容概要:本文详细介绍了基于小波包分析和神经网络的滚动轴承故障诊断方法及其MATLAB实现。首先,通过小波包分析对振动信号进行多层次分解,提取不同频段的能量特征,形成特征向量。其次,利用神经网络(如前馈神经网络、模式识别网络、RBF神经网络)对提取的特征进行训练和分类,实现故障诊断。文中提供了详细的代码示例和参数配置,并讨论了常见问题及解决方案,如数据预处理、特征归一化、转速补偿等。此外,还探讨了不同小波基的选择以及特征可视化的应用。 适合人群:从事机械故障诊断、信号处理、机器学习等相关领域的研究人员和技术人员。 使用场景及目标:适用于工业设备维护和故障检测,旨在提高滚动轴承故障诊断的准确性,减少设备停机时间和维修成本。 其他说明:文中提供的MATLAB代码和报告模板有助于快速上手实验,同时强调了特征工程和可解释性的重要性。
2025-11-23 22:00:32 2.31MB
1
轻载下润滑滚动轴承的打滑动力学模型:动态研究及减缓措施的探索,包含弹流润滑、油膜刚度与赫兹接触刚度等多重因素的考虑分析,轻载下润滑滚动轴承的打滑现象动态研究与减缓措施:基于MATLAB动力学建模的弹流润滑滚子轴承打滑特性分析,Dynamic investigation and alleviative measures for the skidding phenomenon of lubricated rolling bearing under light load matlab轴承动力学建模,轴承打滑,轴承打滑动力学模型,弹流润滑作用下滚子轴承打滑动力学模型,考虑了油膜刚度与赫兹接触刚度、等效阻尼等,分析了弹流润滑作用下的打滑特性 ,关键词:动态调查; 减缓措施; 润滑滚动轴承; 轻载下打滑现象; Matlab轴承动力学建模; 轴承打滑; 打滑动力学模型; 弹流润滑; 滚子轴承打滑; 油膜刚度; 赫兹接触刚度; 等效阻尼; 打滑特性。 分号分隔结果为: 动态调查;减缓措施;润滑滚动轴承;轻载下打滑现象;Matlab轴承动力学建模;轴承打滑;打滑动力学模型;弹流润滑;滚子轴承打滑;油
2025-11-17 15:42:09 919KB edge
1
,,滚动轴承故障诊断MATLAB程序:快速谱峭度、谱峭度+包络谱分析。 可以很好的提取出滚动轴承故障特征 ,核心关键词:滚动轴承故障诊断; MATLAB程序; 快速谱峭度; 谱峭度; 包络谱分析; 特征提取。,MATLAB程序:快速谱峭度与包络谱分析助力滚动轴承故障诊断 在现代机械系统中,滚动轴承扮演着至关重要的角色,其可靠性直接影响到整个机械系统的稳定运行。随着机械设备的广泛应用,对于滚动轴承的监控和故障诊断技术变得日益重要。为了提高故障诊断的准确性和效率,科研人员开发了多种基于信号处理的故障诊断方法。其中,快速谱峭度和包络谱分析是两种有效的技术手段。 快速谱峭度(Fast Kurtogram)是一种基于峭度的分析方法,用于检测和分析非平稳信号中包含的瞬态冲击,这对于识别滚动轴承的局部故障非常有效。峭度是衡量信号尖锐度的统计量,而快速谱峭度通过对信号进行多分辨率分解,能够在多个频率分辨率下计算峭度指标,从而优化冲击特征的检测。在滚动轴承的故障诊断中,快速谱峭度能够突出信号中与冲击相关的频率成分,进而揭示轴承的故障模式。 谱峭度(Spectral Kurtosis)则是一种对频谱成分进行分析的工具,它同样基于峭度概念,通过对信号的频谱进行分析,能够识别信号中的异常频率成分。谱峭度的高值通常指示了信号中存在的瞬态故障特征,如滚动轴承的磨损、裂纹或冲击损伤。通过谱峭度分析,可以有效地提取出与轴承故障相关的频率成分,为故障诊断提供有力证据。 包络谱分析是另一种常用的故障诊断技术,特别是针对周期性冲击类故障。当滚动轴承出现损伤时,损伤处会与滚动体产生周期性的撞击,从而产生冲击响应。通过对滚动轴承的振动信号进行包络处理,可以放大故障相关的冲击成分,进而通过频谱分析提取出故障特征。包络谱分析特别适用于轴承故障的早期检测,因为它能够从复杂的背景噪声中分离出周期性的故障特征。 MATLAB程序在滚动轴承故障诊断中起到了核心作用。通过编写专门的程序,工程师能够实现快速谱峭度和包络谱分析的自动化处理,提高故障诊断的效率和准确性。MATLAB不仅提供了丰富的信号处理工具箱,还具有强大的数据可视化功能,使得故障特征的提取和分析更为直观。 在实际应用中,MATLAB程序可以快速处理大量振动数据,通过快速谱峭度和包络谱分析提取出滚动轴承的故障特征,实现故障的早期检测和定位。这不仅有助于减少设备的意外停机时间,提高生产效率,还能显著降低维护成本。 快速谱峭度和包络谱分析在滚动轴承故障诊断中显示出巨大的潜力和优势。结合MATLAB程序的强大功能,这两种技术已经成为机械故障检测领域中不可或缺的工具。随着技术的不断发展,这些方法在未来的智能诊断系统中也将发挥更加重要的作用。
2025-11-12 17:13:17 2.09MB 数据仓库
1
内容概要:本文详细介绍了如何使用MATLAB进行滚动轴承的二自由度动力学建模,涵盖正常状态及内外圈、滚动体故障的动态响应仿真。首先建立了二自由度的动力学方程,定义了质量、阻尼和刚度矩阵,并根据不同类型的故障(内圈、外圈、滚动体)设置了相应的故障激励力。通过ODE求解器(如ode45)求解微分方程,得到时域内的振动波形。接着进行了频谱分析,展示了不同状态下频谱图的特点,如内圈故障在转频的倍频处出现峰值,外圈故障在较低频段有特征峰,滚动体故障表现为宽频带特性。此外,还提供了故障特征提取的方法,如包络谱分析。 适用人群:机械工程领域的研究人员和技术人员,特别是从事机械设备故障诊断和预测性维护的专业人士。 使用场景及目标:适用于需要理解和研究滚动轴承在不同工况下的动态行为的研究项目。主要目标是帮助用户掌握如何利用MATLAB进行轴承动力学建模,识别并分析各种故障模式,从而提高设备的可靠性和安全性。 其他说明:文中提供的代码可以直接用于实验验证,同时给出了许多实用的提示和注意事项,如选择合适的ODE求解器、合理设置故障幅值以及避免数值发散等问题。
2025-11-04 17:24:46 762KB
1
内容概要:文章介绍了滚动轴承外圈故障的动力学建模方法,重点阐述了如何利用MATLAB构建能够反映系统工况与故障尺寸的数学模型。通过描述滚动体与故障边缘接触时产生的激励力,采用弹簧-阻尼器模型模拟接触力与摩擦力,并结合动力学方程实现系统动态响应仿真。文中提供了MATLAB代码示例,并强调模型验证与参数调整的重要性。 适合人群:适用于具备基础编程知识、初涉机械故障诊断或动力学建模的1-3年经验研发人员或工科学生。 使用场景及目标:①学习基于MATLAB的机械系统动力学建模流程;②掌握滚动轴承故障机理与激励力建模方法;③为后续故障诊断、振动分析和预测性维护提供模型基础。 阅读建议:建议读者结合MATLAB环境动手实现代码,理解每一步物理意义,并尝试调整参数以观察系统响应变化,进而深化对轴承动力学与编程实现的综合掌握。
2025-10-15 10:10:09 384KB MATLAB 故障诊断 滚动轴承
1
内容概要:本文介绍了基于CWT-CNN-SVM的滚动轴承故障诊断模型及其Matlab代码实现。首先,通过连续小波变换(CWT),将原始振动信号转化为时频图,以便更好地观察和分析信号特性。接着,利用卷积神经网络(CNN)提取时频图中的特征,并通过支持向量机(SVM)进行多级分类任务,以提高诊断的准确性和鲁棒性。最后,使用t-SNE进行样本分布的可视化,帮助理解和验证模型的分类结果。整个流程包括数据预处理、CWT转换、CNN-SVM训练以及T-SNE可视化四个主要步骤。 适合人群:从事机械设备故障诊断的研究人员和技术人员,尤其是对滚动轴承故障诊断感兴趣的工程师。 使用场景及目标:适用于需要对滚动轴承进行故障诊断的实际应用场景,旨在通过先进的机器学习和信号处理技术,实现对滚动轴承故障的早期预警和精准判断,从而降低设备维护成本和减少停机时间。 其他说明:文中详细描述了每个步骤的技术细节和实现方法,并提供了具体的Matlab代码实现指南。未来研究方向包括进一步优化模型参数和改进模型结构,以提升诊断效果。
2025-09-22 19:29:02 332KB
1
基于Matlab的迁移学习技术用于滚动轴承故障诊断,振动信号转图像处理并高精度分类,基于Matlab的迁移学习滚动轴承故障诊断系统:高准确率,简易操作,Matlab 基于迁移学习的滚动轴承故障诊断 1.运行环境Matlab2021b及以上,该程序将一维轴承振动信号转为二维尺度图图像并使用预训练网络应用迁移学习对轴承故障进行分类,平均准确率在98%左右。 2.使用MATLAB自带的Squeezenet模型进行迁移学习,若没有安装Squeezenet模型支持工具,在命令窗口输入squeezenet,点击下载链接进行安装。 3.程序经过验证,保证程序可以运行。 4.程序均包含详细注释。 ,关键词:Matlab; 迁移学习; 滚动轴承故障诊断; 振动信号转换; 二维尺度图; 预训练网络; Squeezenet模型; 平均准确率; 程序验证; 详细注释。,基于Matlab的迁移学习轴承故障诊断系统:振动信号二维化与Squeezenet应用
2025-09-21 18:50:55 3.43MB kind
1
CRWU数据集,全称为凯斯西储大学滚动轴承数据集,主要用于故障诊断领域。该数据集详细记录了不同状态下滚动轴承的运行情况,为研究轴承故障提供了一个宝贵的实验平台。在机械工程和工业自动化领域,滚动轴承作为关键的传动部件,其健康状态直接关系到整个机械设备的运行效率和安全性。因此,准确及时地诊断出轴承是否出现故障,以及故障的类型和程度,对于预防机械故障、减少生产停机时间、降低维修成本具有重要意义。 CRWU数据集包含了多种不同状况下的滚动轴承数据,其中包括正常状态的基准数据和不同转速下两端轴承的故障数据。具体而言,数据集中提供了两种不同转速(12k和48k RPM)下,驱动端和风扇端轴承在正常状态和故障状态下的振动信号数据。通过这些丰富的实验数据,研究人员可以运用不同的信号处理和机器学习算法,构建出准确的轴承故障诊断模型。 对于故障诊断来说,数据的质量直接影响模型的性能。CRWU数据集之所以受到重视,是因为其数据质量高,涵盖了多种常见的轴承故障类型。例如,数据集中可能包括轴承内外圈故障、滚动体故障等,这些故障在工业应用中十分常见,对这些故障的研究具有重要的实际应用价值。同时,由于数据集提供了不同工作条件下的轴承数据,包括不同的转速、不同的工作状态,这有助于开发出更为鲁棒的诊断算法,能够适应复杂的工业环境。 在使用CRWU数据集进行故障诊断研究时,一个重要的研究方向是信号处理技术。通过对采集到的振动信号进行处理,可以提取出反映轴承健康状态的特征。这些特征的提取是诊断过程中的关键步骤,包括但不限于时域分析、频域分析和时频分析等多种方法。通过有效特征的提取,可以大幅提高故障诊断的准确性和效率。 此外,随着人工智能技术的发展,机器学习和深度学习在故障诊断领域中的应用越来越广泛。CRWU数据集也常被用于训练和验证这些智能算法。通过深度神经网络、支持向量机、随机森林等机器学习方法,研究人员可以实现对轴承状态的自动分类和故障预测。 CRWU数据集的广泛使用,不仅推动了故障诊断技术的发展,也为相关领域的学术交流和技术合作提供了平台。通过对这些数据的深入分析,研究人员能够更好地理解轴承故障的本质,为设计更加可靠和高效的轴承提供理论依据。同时,这些研究成果也能为工业界带来实际的改进方案,提高机械设备的运行安全性,降低维护成本。 CRWU数据集对于滚动轴承故障诊断的研究具有重要的价值。通过该数据集,研究人员可以更好地理解和掌握轴承故障的规律,开发出更为先进和精确的故障诊断方法。这不仅有助于推动故障诊断技术的进步,也对保障机械设备的可靠运行和提高工业生产效率具有重要的现实意义。
2025-09-21 17:22:37 234.22MB 故障诊断
1
内容概要:本文介绍了基于Matlab 2021b及以上版本的迁移学习在滚动轴承故障诊断中的应用。程序主要分为四个部分:数据预处理、模型加载、迁移学习以及故障分类。首先,对一维轴承振动信号进行预处理,将其转换为二维尺度图图像。接着,加载MATLAB自带的Squeezenet模型进行迁移学习,通过对预训练模型的调整,使其适应轴承故障诊断的任务。最后,使用调整后的模型对轴承故障进行分类,输出分类结果及准确率。实验结果显示,该方法的平均准确率约为98%,并且程序已验证可以正常运行,所有关键步骤都附有详细注释。 适合人群:机械工程领域的研究人员和技术人员,尤其是那些对滚动轴承故障诊断感兴趣的从业者。 使用场景及目标:①用于工业设备维护和故障预测;②提高轴承故障诊断的准确性,减少停机时间;③帮助工程师理解迁移学习在实际应用中的具体实现。 阅读建议:读者应具备一定的Matlab编程基础和基本的机器学习概念,以便更好地理解和应用文中提供的方法和技术。
2025-09-21 16:05:15 1.81MB
1
Matlab迁移学习算法助力轴承故障诊断:准确率高达98%,附带详细注释的程序,基于Matlab的迁移学习滚动轴承故障诊断系统:高准确率,简易操作,Matlab 基于迁移学习的滚动轴承故障诊断 1.运行环境Matlab2021b及以上,该程序将一维轴承振动信号转为二维尺度图图像并使用预训练网络应用迁移学习对轴承故障进行分类,平均准确率在98%左右。 2.使用MATLAB自带的Squeezenet模型进行迁移学习,若没有安装Squeezenet模型支持工具,在命令窗口输入squeezenet,点击下载链接进行安装。 3.程序经过验证,保证程序可以运行。 4.程序均包含详细注释。 ,Matlab; 迁移学习; 滚动轴承故障诊断; 一维振动信号转换; 二维尺度图图像; 预训练网络; Squeezenet模型; 平均准确率; 程序验证; 详细注释。,基于Matlab的迁移学习轴承故障诊断系统:振动信号二维化与Squeezenet应用
2025-09-21 09:03:14 2.16MB
1