在本项目中,"kaggle泰坦尼克号python的所有实验代码以及实验报告"是一个针对著名数据科学竞赛——Kaggle的泰坦尼克号生存预测挑战的完整学习资源。这个项目包含了使用Python编程语言进行数据分析、特征工程和机器学习模型构建的全过程。以下是基于这个主题的详细知识点讲解: 1. **Python基础**:Python是数据科学中广泛使用的编程语言,它的语法简洁,易于学习。在泰坦尼克号项目中,Python用于读取、清洗、处理和分析数据。 2. **Pandas库**:Pandas是Python的一个重要数据处理库,用于数据清洗、整理和分析。在这里,它被用来加载CSV数据,进行数据类型转换,缺失值处理,以及数据子集的筛选。 3. **NumPy**:NumPy提供了高效的多维数组操作,对于计算和统计分析非常有用。在泰坦尼克号项目中,可能用于计算统计量,如平均值、中位数等。 4. **Matplotlib和Seaborn**:这两个库用于数据可视化,帮助理解数据分布和模型结果。例如,它们可以用于绘制乘客年龄、性别、票价等特征的直方图,以及生存率与这些特征的关系图。 5. **Scikit-learn**:这是Python中的机器学习库,包含多种监督和无监督学习算法。在这个项目中,可能会用到Logistic Regression、Decision Trees、Random Forest、Support Vector Machines等算法来预测乘客的生存情况。 6. **特征工程**:这是数据分析的关键步骤,包括创建新特征(如家庭成员数量、票价等级等)、编码类别变量(如性别、船舱等级)以及处理缺失值。 7. **模型训练与评估**:使用训练集对模型进行拟合,然后使用验证集或交叉验证来评估模型性能。常见的评估指标有准确率、精确率、召回率、F1分数和AUC-ROC曲线。 8. **模型调优**:通过调整模型参数(如决策树的深度、随机森林的树的数量)来提高模型的预测能力。此外,也可能使用网格搜索、随机搜索等方法进行参数优化。 9. **Ensemble Learning**:可能采用集成学习方法,如Bagging、Boosting,将多个模型的预测结果组合起来,以提高最终预测的准确性。 10. **实验报告**:实验报告会详细记录整个分析过程,包括数据介绍、问题定义、方法选择、模型构建、结果解释和未来改进的方向。它可以帮助读者理解分析思路,评估研究的可靠性和有效性。 通过这个项目,初学者不仅可以学习到数据科学的基本流程,还能深入理解如何在实际问题中应用Python和机器学习技术。同时,这也是一个提升数据可视化、问题解决能力和项目管理技巧的好机会。
2024-10-19 17:42:38 2.35MB python
1
机器学习期末作业 数据集来源:Kaggle泰坦尼克号罹难乘客生存预测 https://www.kaggle.com/c/titanic/data 代码编辑器:Jupyter Notebook 论文排版:LaTex
2024-06-19 16:53:38 106KB Kaggle
泰坦尼克号数据集分析 问题:有哪些因素会让船上的人生还率更高? 一、数据基本信息 #引入需要的包 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline #读取数据集 titanic_df = pd.read_csv('titanic-data.csv') titanic_df.head() 舱房等级越高生还率越高,女性生还率高于男性,儿童生还率高于其他年龄段。但是此结论有一定的局限性,实际上泰坦尼克号上有2224名乘客,而此数据集只有891名乘客的数据,另外也并不知道样本是如何选取的,样本量也不大,如果不是随机抽样,那么这个结论就不可靠了,而且可能还有其他数据集中没有的变量影响着生还率,比如乘客的身高、体重等等。
2024-06-10 17:17:07 222KB python
1
泰坦尼克号数据_泰坦尼克号数据分析报告 891名乘客中遇难乘客有549⼈,占61.6%,⽣还乘客342⼈,占38.4%.各等级船舱乘客⼈数 各等级船舱乘客⼈数 Pclass_count=titanic_data['Pclass'].value_counts().sort_index() #⽤Bar_pie()函数作条形图和饼状图 Bar_pie(Pclass_count) 三等船舱乘客最多,占55.1%;⼀等船舱次之占24.2%;⼆级船舱乘客最少,占20.7%.男⼥乘客分布情况 男⼥乘客分布情况 Sex_count=titanic_data['Sex'].value_counts() print(Sex_count) Bar_pie(Sex_count) male 577 female 314 Name: Sex, dtype: int64 男乘客有577⼈,占64.8%;⼥乘客有314⼈,占35.2%.乘客年龄分布情况 乘客年龄分布情况 In [84]: #乘客年龄分布直⽅图 #创建figure、subplot,并⽤hist作条形图 fig_Age=plt.figure(figsize=(10,5)) ax_Age=fig_Age.add_subplot(1,2,1) titanic_data['Age'].hist(bins=10,color='g',alpha=0.3,grid=False) #设置x轴刻度标签 ax_Age.set_xticks([0,10,20,30,40,50,60,70,80,90,100]) #添加标题,x轴标签,y轴标签 ax_Age.set_title('Hist plot of Age') ax_Age.set_xlabel('Age') ax_Age.set_ylabel('number of people') #乘客年龄分布箱线图 #作箱线图 plt.subplot(122) titanic_data.boxplot(column='Age',showfliers=False) #添加y轴标签 plt.ylabel('Age') plt.title('boxplot of Fare') titanic_data['Age'].describe() count 891.000000 mean 29.544332 std 13.013778 min 0.000000 25% 22.000000 50% 29.000000 75% 35.000000 max 80.000000 Name: Age, dtype: float64 乘客年龄⼤概成正态分布,平均年龄29岁多,最⼤的80岁,最⼩的不到1岁(利⽤int()取整,不到1岁的为0).兄弟姐妹、配偶在船上的 兄弟姐妹、配偶在船上的 乘客分布情况条形图 乘客分布情况条形图 #创建figure、subplot,⽤plot()作柱状图 fig_SibSp=plt.figure(figsize=(10,5)) ax_SibSp=fig_SibSp.add_subplot(1,2,1) SibSp_count=titanic_data['SibSp'].value_counts() SibSp_count.plot(kind='bar') #添加标题,x轴标签,y轴标签 ax_SibSp.set_title('Bar plot of SibSp') ax_SibSp.set_xlabel('number of SibSp') ax_SibSp.set_ylabel('number of people') #拥有各 数量的兄弟姐妹、配偶的乘客⽐例条形图 plt.subplot(122) SibSp_count.div(SibSp_count.sum()).plot(kind='bar') #添加标题,x、y轴 标签 plt.title('Ratio of people in SibSp') plt.xlabel('SibSp') plt.ylabel('ratio') 在船上没有兄弟姐妹配偶的乘客较多,占68.2%.⽗母、孩⼦在船上的乘客分布条形图 ⽗母、孩⼦在船上的乘客分布条形图 Parch_count=titanic_data['Parch'].value_counts() #创建figure、subplot,⽤plot()作柱状图 fig_Parch=plt.figure(figsize=(10,5)) ax_Parch=fig_Parch.add_subplot(1,2,1) Parch_count.plot(kind='bar') #添加标题,x、y轴标签 ax_Parch.set_title('Bar plot of Parch') ax
2024-06-10 17:06:49 197KB 文档资料
1
数据来源:Kaggle数据集 → 共有1309名乘客数据,其中891是已知存活情况(train.csv),剩下418则是需要进行分析预测的(test.csv) 字段意义: PassengerId: 乘客编号 Survived :存活情况(存活:1 ; 死亡:0) Pclass : 客舱等级 Name : 乘客姓名 Sex : 性别 Age : 年龄 SibSp : 同乘的兄弟姐妹/配偶数 Parch : 同乘的父母/小孩数 Ticket : 船票编号 Fare : 船票价格 Cabin
2023-12-17 12:58:50 62KB 泰坦尼克号
1
泰坦尼克号,Titanic,英语演讲PPT,包含故事梗概,精彩集锦,精彩图片,高清大图,非常适合作为英语演讲使用~
2023-04-09 16:54:01 3.16MB PPT
1
泰坦尼克号的生存预测原始数据,以及Kaggle的下载网站
1
预测泰坦尼克号乘客的生存-Kaggle竞赛 使用技能:NumPy,Pandas,Seaborn,scikit-learn(决策树分类器,SVM),xgboost(XGBClassifier),集成学习 挑战 泰坦尼克号的沉没是历史上最臭名昭著的海难之一。 1912年4月15日,在她的处女航中,被广泛认为的“沉没” RMS泰坦尼克号与冰山相撞后沉没。 不幸的是,船上没有足够的救生艇供所有人使用,导致2224名乘客和机组人员中的1502人死亡。 虽然幸存有一些运气,但似乎有些人比其他人更有可能生存。 在这一挑战中,我们要求您建立一个预测模型来回答以下问题:“什么样的人更有可能生存?” 使用乘客数据(即姓名,年龄,性别,社会经济舱等)。 我解决挑战的方法 处理数据以解决0,NaN等问题。 进行探索性数据分析以执行功能选择和工程设计 随机选择火车/测试区 训练决策树分类器,XGB分类器和S
2023-01-06 16:05:01 5KB JupyterNotebook
1
lstm tensorflow 使用 LSTM 模型来对泰坦尼克号数据集进行预测 使用 Keras 深度学习框架 通过使用 scikit-learn 的 load_titanic 函数来完成
2023-01-01 15:26:43 1KB LSTM
1
r-kaggle-泰坦尼克号 #Titanic生存预测 该存储库包含我针对Kaggle的《泰坦尼克号生存预测问题》的一些方法。 该存储库包括用于功能选择的脚本,用于数据建模的替代策略,原始测试和训练数据集以及为其生成的可视化图。 所有代码段均以R编写。 泰坦尼克号生存预测问题 在这一普遍的挑战中,目标是根据性别,阶级,机票详细信息,年龄类别等属性来预测什么样的人可能度过泰坦尼克号灾难。 程式码范例 去做 动机 列出的示例代码中的一种方法已提交给Kaggle。 安装 数据集可以在“数据”文件夹中找到。 它包括2个分别用于培训和测试的csv文件。 train.csv(59.76 kb) test.csv(27.96 kb) 使用以下R包。 seqinr:生物序列检索和分析 e1071:统计部概率论小组的其他职能(以前为E1071),维也纳工业大学 派对:递归派对的实验室 Ame
2022-12-16 11:06:19 77KB R
1