粒子群算法(PSO)优化极限梯度提升树XGBoost时间序列预测,PSO-XGBoost时间序列预测模型,单列数据输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-31 18:40:27 54.69MB
1
遗传算法(GA)优化极限梯度提升树XGBoost回归预测,GA-XGBoost回归预测模型,多变输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-27 19:15:04 54.7MB
1
灰狼算法(GWO)优化极限梯度提升树XGBoost时间序列预测,GWO-XGBoost时间序列预测模型,单列数据输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-27 17:36:46 54.69MB
1
麻雀算法(SSA)优化极限梯度提升树XGBoost回归预测,SSA-XGBoost回归预测模型,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2023-11-08 16:04:11 54.69MB
1
轻型GBM 高性能渐变增强-适用于Ruby 安装 将此行添加到您的应用程序的Gemfile中: gem 'lightgbm' 在Mac上,还要安装OpenMP: brew install libomp 培训API 准备数据 x = [ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] , [ 7 , 8 ] ] y = [ 1 , 2 , 3 , 4 ] 训练模型 params = { objective : "regression" } train_set = LightGBM :: Dataset . new ( x , label : y ) booster = LightGBM . train ( params , train_set ) 预测 booster . predict ( x ) 将模型保存到文件 booster . save_mode
2023-03-06 19:44:59 62KB machine-learning lightgbm rubyml Ruby
1
1. 提升树 boostring tree 是以决策树为基本学习器的提升方法 2. 对分类问题,提升树中的决策树是二叉决策树 3. 提升树模型可以表示为决策树为
2023-02-27 19:49:58 1.91MB html 决策树 回归 算法
1
基于四种决策树实现预测大气污染日的概率模型项目源码+数据+超详细注释 任务:根据环境数据,预测当天是不是大气污染日 内容包含: 1.本程序使用了四种模型进行预测,并对四种模型预测效果进行评估测试,分别是: 袋装决策树(BaggingClassifier) 额外决策树(ExtraTreesClassifier) 随机梯度提升(GradientBoostingClassifier) 随机森林(RandomForestClassifier) 2.本程序通过对例4中的梯度提升模型调整参数,来提高预测的准确率。分别调整了深度,学习率,采样集,和树数,通过brier skill score值来评价结果
AdaboostOnMNIST 这是使用两个不同的弱学习者从头开始实现Adaboost算法的方法:决策树分类器和梯度提升分类器。 Adaboost在MNIST上运行以告知奇数和偶数。 经过scikit Learn模型的adaboost测试,并获得了更高的分数。 最小的训练误差为%1.8,在7次迭代中进行了梯度增强。 函数调用为adaboost(X_train,Y_train,inversions_t,Classifier_type),有两种类型的分类器,“ Gradient_Boost”和“ Decision_tree”可以放入第4个输入中。 adaboost返回一个4元组(stump,stump_weights,errors,D_weights) 您可以使用predict(stumps,stump_weights,X_test)对训练集进行预测。 这将返回该X_test的标签数组
2022-06-09 17:13:26 2KB Python
1
原理: 决策树生成算法: 是递归地生成决策树,它往往分类精细,对训练数据集分类准确,但是对未知数据集却没有那么准确,有比较严重的过拟合问题。因此,为了简化模型的复杂度,使模型的泛化能力更强,需要对已生成的决策树进行剪枝。 集成分类算法: 集成(Ensemble)分类模型综合考量多个分类器的预测结果,从而做出决策。 随机森林分类器用相同的训练数据同时搭建多个独立的分裂模型,然后通过投票的方式,以少数服从多数的原则作出最终分类的决策。在相同的训练数据上同时搭建多棵决策树,每棵决策树会放弃固定的排序算法,随机选取特征。 梯度提升决策树按照一定的次序搭建多个分类模型。模型之间彼此存在依赖关系。后续加入
2022-04-02 21:02:07 276KB python python3 决策
1
分类问题中的特征选择一直是一个重要而又困难的问题。这类问题中要求特征选择算法不仅能够帮助分类器提高分类准确率,同时还要尽可能地减少冗余特征。因此,为了在分类问题中更好地进行特征选择,提出了一种新型的包裹式特征选择算法XGBSFS。该算法借鉴极端梯度提升(XGBoost)算法中构建树的思想过程,通过从3个重要性度量的角度来衡量特征的重要性,避免单一重要性度量的局限性;然后通过改进的序列浮动前向搜索策略(ISFFS)搜索特征子集,使最终得到的特征子集有较高的质量。在8个UCI数据集的对比实验中表明,所提算法具有很好的性能。
1