共轭梯度法(Conjugate Gradient Method)是一种在数值线性代数中解决大型对称正定矩阵线性系统的重要方法。它适用于求解大型稀疏矩阵问题,因为其迭代次数通常与矩阵的条件数相关,对于好的矩阵结构,如对角主导,其效率很高。在偏微分方程(PDEs)的数值解法中,共轭梯度法经常被用于求解线性化的方程组。 偏微分方程是描述许多物理现象的关键工具,如热传导、流体动力学等。在计算机模拟中,将连续域离散化为网格,通常采用有限差分方法(Finite Difference Method)来近似PDEs的解。五点法是一种有限差分方法,用于二维空间中的二阶偏微分方程,如泊松方程,通过在每个网格节点处的相邻五个点上定义差分表达式来逼近二阶导数。 在这个特定的实现中,描述提到了从无并行版本升级到MPI并行版本。MPI(Message Passing Interface)是分布式内存并行计算的一种标准,它允许在多台计算机或多个处理器之间交换信息。在解决大型计算问题时,如大规模的偏微分方程求解,使用MPI可以将任务分解到多个计算节点上,显著提高计算速度。 表达式模板(Expression Templates)是C++编程中一种优化技术,用于在编译时处理数学表达式,避免了不必要的临时对象创建,提高了代码执行效率。在科学计算库如Eigen中,表达式模板被广泛应用,使得在处理大型矩阵和向量运算时能保持高效。 结合这些标签和描述,这个C++程序很可能是使用MPI进行并行化,通过五点法有限差分对偏微分方程进行离散化,然后利用共轭梯度法求解由此产生的线性系统。同时,为了优化性能,可能采用了表达式模板技术来处理矩阵和向量操作。文件"ass5_final"可能是项目代码的最终版本,包含了这些算法和方法的实现。 理解并实现这样的程序需要扎实的数值分析基础,对C++编程、MPI并行计算以及线性代数的知识有深入的了解。调试和优化这样的代码也需要考虑内存访问模式、并行效率和计算精度等因素。对于希望深入学习科学计算和并行计算的学者来说,这是一个有价值的实践项目。
1
共轭梯度法 最优化 c++
2024-05-20 10:15:03 2KB 共轭梯度法
1
tensorflow1.x完成,适应了tensorflow2.x环境,DQN,DDPG,ACTOR-CRITIC等等强化学习卸载方案
2024-05-13 21:17:35 3.76MB 边缘计算
1
这是用于使用软边界模型和次梯度下降优化的 2 类问题的支持向量机代码。
2024-04-14 15:15:16 81KB matlab
1
FGSM:resnet50上的快速梯度符号方法实现
2024-04-12 18:58:12 130KB JupyterNotebook
1
今天小编就为大家分享一篇PyTorch的SoftMax交叉熵损失和梯度用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2024-03-28 21:45:21 45KB PyTorch SoftMax 交叉熵损失
1
约束优化的分布式梯度算法在电力系统负荷分担中的应用
2024-03-20 21:18:54 701KB 研究论文
1
粒子群算法(PSO)优化极限梯度提升树XGBoost时间序列预测,PSO-XGBoost时间序列预测模型,单列数据输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-31 18:40:27 54.69MB
1
遗传算法(GA)优化极限梯度提升树XGBoost回归预测,GA-XGBoost回归预测模型,多变输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-27 19:15:04 54.7MB
1
灰狼算法(GWO)优化极限梯度提升树XGBoost时间序列预测,GWO-XGBoost时间序列预测模型,单列数据输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-27 17:36:46 54.69MB
1