作为人工智能领域的热门研究问题,深度强化学习自提出以来,就受到人们越来越多的关注。目前,深度强化学 习能够解决很多以前难以解决的问题,比如直接从原始像素中学习如何玩视频游戏和针对机器人问题学习控制策略,深度强 化学习通过不断优化控制策略,建立一个对视觉世界有更高层次理解的自治系统。其中,基于值函数和策略梯度的深度强化 学习是核心的基础方法和研究重点。本文对这两类深度强化学习方法进行了系统的阐述和总结,包括用到的求解算法和网络 结构。首先,概述了基于值函数的深度强化学习方法,包括开山鼻祖深度Q 网络和基于深度Q 网络的各种改进方法。然后 介绍了策略梯度的概念和常见算法,并概述了深度确定性策略梯度 深度强化学习(Deep Reinforcement Learning, DRL)是人工智能领域中的一个重要分支,它结合了深度学习的表征能力与强化学习的决策制定机制。本文由刘建伟、高峰和罗雄麟共同撰写,深入探讨了基于值函数和策略梯度的DRL方法。 一、基于值函数的深度强化学习 值函数在强化学习中用于评估状态的价值或策略的期望回报。深度Q网络(Deep Q-Network, DQN)是这一领域的里程碑式工作,它解决了传统Q学习的两个关键问题:经验回放缓存(experience replay)和固定目标网络(fixed target network)。DQN通过神经网络学习状态动作值函数Q(s, a),并使用贝尔曼最优方程进行更新。随后出现了许多DQN的变体,如Double DQN、 Dueling DQN等,旨在减少过估计,提高学习稳定性。 二、策略梯度方法 策略梯度是另一种强化学习策略,它直接优化策略参数,以最大化期望回报。这种方法的优点是可以处理连续动作空间。文章介绍了策略梯度的基本概念,并讨论了如REINFORCE算法。此外,还提到了深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)算法,它适用于连续动作空间的问题,通过引入actor-critic结构和经验回放缓存来稳定学习过程。 三、其他深度强化学习方法 除了DQN和DDPG,文章还提及了信赖域策略优化(TRUST Region Policy Optimization, TRPO)和异步优势演员评论家(Accelerated Advantage Actor-Critic, A3C)等策略梯度的变种。TRPO通过约束策略更新的幅度,保证了策略的稳定性,而A3C则利用多线程异步更新,提高了学习速度。 四、前沿进展:AlphaGo与AlphaZero AlphaGo是谷歌DeepMind团队开发的围棋AI,它通过深度学习和蒙特卡洛树搜索结合,击败了世界冠军。AlphaZero是AlphaGo的升级版,不再依赖人类知识,仅通过自我对弈就能掌握多种棋类游戏的顶尖水平。AlphaZero的成功表明,基于深度强化学习的方法可以实现通用的游戏策略学习。 五、未来展望 随着技术的发展,深度强化学习的应用将更加广泛,如机器人控制、自动驾驶、资源调度等领域。未来的研究方向可能包括更高效的算法设计、更好的泛化能力、以及处理高维度和连续状态/动作空间的能力。同时,解决现实世界中的延迟问题、探索环境不确定性以及提高学习效率也是重要的研究课题。 总结,深度强化学习通过值函数和策略梯度方法,实现了从原始输入数据中自动学习高级行为的突破。这些方法的不断发展和完善,不仅推动了人工智能的进步,也为实际问题的解决提供了强大的工具。
2025-06-26 11:02:08 1.35MB 深度学习 强化学习 深度强化学习
1
基于ABAQUS UMAT子程序实现的应变梯度塑性理论:模拟损伤与断裂分析的详细解析与实现指南,ABAQUS UMAT子程序实现应变梯度塑性理论模拟损伤和断裂的分析 (包含的文件如图所示,pdf详细介绍子程序的内容,公式等) ,核心关键词:ABAQUS; UMAT子程序; 应变梯度塑性理论; 损伤模拟; 断裂模拟; 公式; pdf文件。,"ABAQUS UMAT子程序模拟应变梯度塑性损伤与断裂分析" ABAQUS软件是国际上流行的大型通用非线性有限元分析软件,广泛应用于结构工程、流体力学、热传递、电磁场等领域。UMAT是ABAQUS软件中的一个用户材料子程序接口,允许用户根据自己的需要编写材料的本构模型。应变梯度塑性理论是一种考虑材料内部尺寸效应的塑性理论,能够更好地模拟材料在小尺寸效应下的行为。利用ABAQUS的UMAT子程序实现应变梯度塑性理论的模拟,可以更准确地预测材料在复杂应力条件下的损伤和断裂。 在实际工程应用中,材料在受力过程中会产生各种形式的损伤和断裂。这些现象往往与材料的内部微观结构和外部环境因素有着密切的关系。传统的塑性理论往往无法完全捕捉到这些复杂的物理过程,而应变梯度塑性理论通过引入塑性变形的尺寸效应,为这些现象提供了更精确的描述。通过编写UMAT子程序,研究人员可以在ABAQUS软件中实现这种理论的数值模拟,为材料设计、结构分析提供重要的理论依据和技术支持。 从文件名称列表中可以看出,该压缩包包含了多个文档和图片文件,这些文档详细介绍了如何利用ABAQUS软件的UMAT子程序实现应变梯度塑性理论模拟损伤和断裂分析的方法。文件中不仅包含了理论公式和算法的介绍,还可能包含了具体的子程序代码以及应用实例的演示。文档可能按照以下结构进行编排:首先介绍理论基础,然后详细解析UMAT子程序的编写方法,包括材料参数的设定、状态变量的更新、本构模型的实现等关键步骤,最后通过实际案例展示子程序的应用效果和分析结果。 在工程应用中,这种通过子程序模拟的方法能够为工程师提供一个强有力的分析工具,帮助他们更深入地理解材料在实际工作状态下的行为,并在设计阶段就预测可能出现的潜在风险,从而提高设计的可靠性和安全性。此外,这种模拟方法在材料科学研究领域也具有重要意义,科研人员可以利用它来探索不同尺度下材料性能的变化规律,为新材料的开发提供理论指导。 在实际操作中,编写UMAT子程序需要对ABAQUS软件的二次开发接口有深入的了解,同时也需要扎实的材料力学、数值分析和计算机编程基础。因此,该指南不仅是对ABAQUS用户的一份实用工具书,也是材料科学、力学和计算科学等相关领域研究人员的一份重要参考资料。
2025-06-21 23:03:58 143KB kind
1
ABAQUS UMAT子程序实现应变梯度塑性理论模拟损伤与断裂详细分析指南(含PDF公式介绍),基于ABAQUS UMAT子程序实现的应变梯度塑性理论模拟:损伤与断裂的深度分析与实践解析,ABAQUS UMAT子程序实现应变梯度塑性理论模拟损伤和断裂的分析 (包含的文件如图所示,pdf详细介绍子程序的内容,公式等) ,ABAQUS;UMAT子程序;应变梯度塑性理论;模拟损伤和断裂;公式,ABAQUS UMAT子程序:实现应变梯度塑性理论模拟损伤与断裂分析 本文指南旨在深入解析如何利用ABAQUS软件中的UMAT子程序实现应变梯度塑性理论的模拟,以分析材料在受到损伤与断裂时的行为。指南内容全面,从基础理论到实际应用均有详细介绍,并附有PDF文件专门介绍相关公式,为研究者和工程师提供了宝贵的参考资源。 指南首先介绍了ABAQUS软件及其UMAT子程序的基本概念与功能。UMAT子程序是ABAQUS用户扩展材料模型的重要途径,允许用户通过Fortran语言编写自定义材料模型,实现对材料非线性行为的精细描述。应变梯度塑性理论是材料力学领域的一项前沿理论,该理论考虑了材料内部微结构的影响,能够更准确地模拟材料在小尺寸效应下的塑性行为,包括损伤与断裂。 文章详细阐述了应变梯度塑性理论的数学基础,包括材料的本构关系、应变梯度效应和损伤机制。通过子程序将理论模型转化为计算模型,指南展示了如何在ABAQUS中实现这一过程,包括编写UMAT子程序的代码框架、参数设定以及如何将模型嵌入到ABAQUS的仿真分析流程中。 在损伤与断裂模拟方面,指南重点介绍了基于应变梯度塑性理论的损伤演化规律,以及如何通过UMAT子程序来计算损伤变量的变化。此外,还涉及了断裂过程的数值模拟,包括裂纹的起始、扩展和最终断裂的模拟方法。 为了帮助理解,指南中还包含了若干个示例文件,这些文件详细记录了模拟分析的步骤和结果,包括损伤与断裂的模拟案例。这些实例不仅加深了读者对理论的理解,也为实际操作提供了范本。 本指南是一份全面而深入的资源,为使用ABAQUS进行应变梯度塑性理论模拟的研究者和工程师提供了系统的方法论和实操指导。通过本指南的学习,用户能够有效地利用UMAT子程序对材料的损伤与断裂行为进行高精度的模拟与分析。
2025-06-21 23:00:46 895KB 哈希算法
1
用Python代码实现了一个GBDT类,训练和预测数据,给出了运行示例。代码解释说明的博客地址:https://blog.csdn.net/u013172930/article/details/143473024 梯度提升决策树(Gradient Boosting Decision Tree,简称GBDT)是一种基于集成学习的机器学习算法,它通过迭代地添加新的树来改进整体模型。GBDT的核心思想是通过不断学习前一个树的残差来构建新的树,以此来修正前一个树的预测误差。在每次迭代中,GBDT都会生成一棵新的决策树,然后将新的决策树与现有的模型集成在一起,以优化目标函数。这种算法特别适合处理回归问题,同时在分类问题上也有不错的表现。 Python作为一门高级编程语言,因其简洁性和强大的库支持,在数据科学领域得到了广泛的应用。在Python中实现GBDT算法,通常需要借助一些专门的机器学习库,例如scikit-learn。然而,在给定的文件中,我们有一个从头开始编写的GBDT类实现,这意味着它可能不依赖于任何外部的库,而是直接用Python的原生功能来完成算法的实现。 文件列表中的"gbdt.ipynb"可能是一个Jupyter Notebook文件,这是一个交互式编程环境,非常适合进行数据科学实验。该文件很可能是对GBDT算法实现的解释和使用说明,其中可能包含了详细的代码注释和运行示例。"cart.py"文件名暗示了它可能是实现分类与回归树(CART)算法的Python脚本。CART是一种决策树算法,可以用于生成GBDT中的单棵树。"utils.py"文件通常包含一些辅助功能或通用工具函数,这些可能是为了支持GBDT类的运行或者在实现过程中使用的通用功能。 这个压缩包文件包含了用Python从零开始实现GBDT算法的完整过程。它不仅提供了GBDT算法的代码实现,还可能包括了如何使用该算法进行训练和预测的示例,以及相关的辅助代码和工具函数。通过这样的实现,用户可以更深入地理解GBDT的工作原理,而不仅仅是作为一个“黑盒”使用现成的机器学习库。
2025-05-08 17:43:11 5KB python boosting GBDT 梯度提升决策树
1
共轭梯度法(Conjugate Gradient Method)是一种在数值线性代数中解决大型对称正定矩阵线性系统的重要方法。它适用于求解大型稀疏矩阵问题,因为其迭代次数通常与矩阵的条件数相关,对于好的矩阵结构,如对角主导,其效率很高。在偏微分方程(PDEs)的数值解法中,共轭梯度法经常被用于求解线性化的方程组。 偏微分方程是描述许多物理现象的关键工具,如热传导、流体动力学等。在计算机模拟中,将连续域离散化为网格,通常采用有限差分方法(Finite Difference Method)来近似PDEs的解。五点法是一种有限差分方法,用于二维空间中的二阶偏微分方程,如泊松方程,通过在每个网格节点处的相邻五个点上定义差分表达式来逼近二阶导数。 在这个特定的实现中,描述提到了从无并行版本升级到MPI并行版本。MPI(Message Passing Interface)是分布式内存并行计算的一种标准,它允许在多台计算机或多个处理器之间交换信息。在解决大型计算问题时,如大规模的偏微分方程求解,使用MPI可以将任务分解到多个计算节点上,显著提高计算速度。 表达式模板(Expression Templates)是C++编程中一种优化技术,用于在编译时处理数学表达式,避免了不必要的临时对象创建,提高了代码执行效率。在科学计算库如Eigen中,表达式模板被广泛应用,使得在处理大型矩阵和向量运算时能保持高效。 结合这些标签和描述,这个C++程序很可能是使用MPI进行并行化,通过五点法有限差分对偏微分方程进行离散化,然后利用共轭梯度法求解由此产生的线性系统。同时,为了优化性能,可能采用了表达式模板技术来处理矩阵和向量操作。文件"ass5_final"可能是项目代码的最终版本,包含了这些算法和方法的实现。 理解并实现这样的程序需要扎实的数值分析基础,对C++编程、MPI并行计算以及线性代数的知识有深入的了解。调试和优化这样的代码也需要考虑内存访问模式、并行效率和计算精度等因素。对于希望深入学习科学计算和并行计算的学者来说,这是一个有价值的实践项目。
1
共轭梯度法 最优化 c++
2024-05-20 10:15:03 2KB 共轭梯度法
1
tensorflow1.x完成,适应了tensorflow2.x环境,DQN,DDPG,ACTOR-CRITIC等等强化学习卸载方案
2024-05-13 21:17:35 3.76MB 边缘计算
1
这是用于使用软边界模型和次梯度下降优化的 2 类问题的支持向量机代码。
2024-04-14 15:15:16 81KB matlab
1
FGSM:resnet50上的快速梯度符号方法实现
2024-04-12 18:58:12 130KB JupyterNotebook
1
今天小编就为大家分享一篇PyTorch的SoftMax交叉熵损失和梯度用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2024-03-28 21:45:21 45KB PyTorch SoftMax 交叉熵损失
1