我有一个机器学习的作业集合,有贝叶斯决策,概率密度函数的估计,朴素贝叶斯分类器和贝叶斯网络模型,线性分类器,非线性分类器,非参数辨别分类方法,特征提取和选择和聚类分析这个机器学习作业集合涵盖了多个重要主题。首先,贝叶斯决策理论基于概率,通过贝叶斯定理进行决策,在不确定性环境下应用广泛。其次,概率密度函数的估计涉及推断概率分布,使用直方图法、核密度估计等方法。朴素贝叶斯分类器是一种基于贝叶斯定理和特征独立性假设的分类算法,在文本分类等场景中有应用。贝叶斯网络模型通过图模型表示变量依赖关系,适用于风险分析等领域。线性和非线性分类器通过线性或非线性决策边界划分数据。非参数辨别分类方法如k近邻算法不限制模型参数数量。特征提取和选择用于数据表示优化,而聚类分析将数据分组为相似性较高的簇。这些主题共同构成了机器学习中重要的方法和技术领域。
2024-11-28 22:03:46 7.24MB 机器学习 python 贝叶斯
1
1、资源内容:机器学习大作业-图像识别-安检识别+实验报告+源代码+文档说明+YOLOv5,python实现 2、代码特点:内含运行结果,不会运行可私信,参数化编程、参数可方便更改、代码编程思路清晰、注释明细,都经过测试运行成功,功能ok的情况下才上传的。 3、适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 4、作者介绍:某大厂资深算法工程师,从事Matlab、Python、C/C++、Java、YOLO算法仿真工作10年;擅长计算机视觉、 目标检测模型、智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、智能控制、路径规划、无人机等多种领域的算法仿真实验,更多源码,请上博主主页搜索。 -------------------------------------------------------------------------- -
2024-06-16 15:20:59 544KB 机器学习 python
EE369 机器学习大作业
2024-06-10 15:07:13 50.86MB
1
python数据分析,因为股票价格的影响因素太多,通过k线数据预测未来的价格变化基本不可行,只有当天之内的数据还有一定的关联,故feature与target都选择的是当天的数据。 加载数据 为了加快数据的处理速度,提前将mariadb数据库中的数据查询出来,保存成feather格式的数据,以提高加载数据的速度。 经过处理,不同股票的数据保存在了不同的文件中,列名还保持着数据库中的字段名。我选择了股票代码为sh600010的这只股票作为数据分析的数据来源。预测出来的结果与真实值变化趋势相近,说明线性回归模型在一定程度上能够解释收盘价与选取的feature之间的关系
2024-04-10 10:35:59 342KB python 机器学习 数据集 股票预测
1
基于python机器学习实现的人脸识别大作业源码+课程报告+项目说明.zip 【资源说明】 1. photo_lib_sec_rec 调用simple_CNN.81-0.96.hdf5进行对照片的性别识别 2. photo_sex_rec 参考网上教程,运用机器学习识别照片中人物的性别 3. photo_test 对照片中人脸和眼睛的识别 4. video_face_rec 视频中人脸的识别 5. video_lib_sex_rec 调用simple_CNN.81-0.96.hdf5进行对视频的性别识别 6. video_sex_rec 视频中人物性别识别 7. project.md 工程代码说明文档 8. 运用BP神经网络实现性别检测(工作报告) 工作流程的大体报告
机器学习大作业线性回归模型和卷积模型识别数字手写体.zip使用TensorFlow技术和Flask框架相结合,采用MNIST数据集作为数据,通过前端HTML和jQuery框架,利用canvas画布将用户在屏幕上的手写文字传入到后台Flask的Restful API中,然后flask通过调取模型接口,把数据传入模型中进行手写体识别,形成一个完整的闭环。本文使用两种方法训练数据,线性和卷积的方法,并将结果进行对比。训练结果较为理想,可以有效识别出手写数字,并得到较好的准确率。 本次MNIST手写数字识别首先使用MNIST来导入数据,建立模型,建立了线性模型和卷积模型。再通过调取模型,进行训练,建立训练模型,保存参数模型,得到训练模型。通过前端请求,加载模型,进行调用。完成数据传入,训练,打包,调用。可以作为基础,可以通过相关数据集训练进行更多图像分类。
于背景的预测框。然后根据置信度阈值(如 0.5)过滤掉阈值较低的预测框。将留下的预测框进行解码,根据先验框得到其真实的位置参数,解码之后,根据置信度进行降序排列
2022-08-04 22:00:54 613KB 机器学习
1
机器学习大作业-机器学习分类,回归,聚类算法项目源码 第一次作业 LinearDiscriminatorAnalysis分类,逻辑回归2,3分类 第二次作业 决策树 第三次作业 MLPClassifier分类器,Percepton线性分类器 第四次作业 一维拟合,二维拟合,支持向量机分类 第五次作业 多项式朴素贝叶斯分类器 第六次作业 GMM聚类算法 第七次作业 AdaBoostClassifier分类器 第八次作业 KMeans,KMedoids聚类
基于机器学习的人脸图像性别识别分类项目源码(机器学习大作业+毕业设计)。 文件说明 GenderRecognition.ipynb - 包含运行结果的交互式Jupyter Notebook run.py - 纯Python代码 save_weights.h5 - 训练2000轮后的权重,可复现最佳预测结果 submission.csv - 输出的预测结果 trial.txt - 使用最佳模型预测训练集,对训练集所做的修改 Jupyter Notebook Preview.html/Jupyter Notebook Preview.pdf - 运行结果,内容同GenderRecognition.ipynb
python机器学习大作业用numoy构建原始CNN网络项目源码。在本项目中,通过numpy实现了一个CNN网络,包括其中的卷积层,池化层以及全连接层,通过公式推导、代码编写,加深了对于卷积、池化、反向传播等概念的理解。 采用现在主流的深度学习框架Pytorch实现识别,并与自己搭建的CNN训练结果进行比较。 采用相同的网络结构: self.conv1 = nn.Conv2d(in_channels=1, out_channels=8, kernel_size=3, padding=0, stride=1) self.maxpool = nn.MaxPool2d(kernel_size =2, stride=None, padding=0) self.fc1 = nn.Linear(13 * 13 * 8, 512) self.fc2 = nn.Linear(512, 10) 在3个epoch下测试结果: 相比与用numpy实现的CNN,其具有较高的稳定性,以及训练速度,因为PyTorch将输入转为张量形式,转入GPU中训练,同时用了SGD优化器,加快loss收敛速度。