机器学习大作业集合包zip

上传者: 52528413 | 上传时间: 2024-11-28 22:03:46 | 文件大小: 7.24MB | 文件类型: ZIP
我有一个机器学习的作业集合,有贝叶斯决策,概率密度函数的估计,朴素贝叶斯分类器和贝叶斯网络模型,线性分类器,非线性分类器,非参数辨别分类方法,特征提取和选择和聚类分析这个机器学习作业集合涵盖了多个重要主题。首先,贝叶斯决策理论基于概率,通过贝叶斯定理进行决策,在不确定性环境下应用广泛。其次,概率密度函数的估计涉及推断概率分布,使用直方图法、核密度估计等方法。朴素贝叶斯分类器是一种基于贝叶斯定理和特征独立性假设的分类算法,在文本分类等场景中有应用。贝叶斯网络模型通过图模型表示变量依赖关系,适用于风险分析等领域。线性和非线性分类器通过线性或非线性决策边界划分数据。非参数辨别分类方法如k近邻算法不限制模型参数数量。特征提取和选择用于数据表示优化,而聚类分析将数据分组为相似性较高的簇。这些主题共同构成了机器学习中重要的方法和技术领域。

文件下载

资源详情

[{"title":"( 30 个子文件 7.24MB ) 机器学习大作业集合包zip","children":[{"title":"shiyan_all","children":[{"title":"Untitled6.ipynb <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false},{"title":"实验四 线性分类器.docx <span style='color:#111;'> 30.87KB </span>","children":null,"spread":false},{"title":"实验六.pdf <span style='color:#111;'> 251.68KB </span>","children":null,"spread":false},{"title":"Untitled4.ipynb <span style='color:#111;'> 38.28KB </span>","children":null,"spread":false},{"title":"Untitled1.ipynb <span style='color:#111;'> 87.30KB </span>","children":null,"spread":false},{"title":"Untitled5.ipynb <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"实验七.pdf <span style='color:#111;'> 288.11KB </span>","children":null,"spread":false},{"title":"实验一 贝叶斯决策.docx <span style='color:#111;'> 22.79KB </span>","children":null,"spread":false},{"title":"Untitled3.ipynb <span style='color:#111;'> 275.10KB </span>","children":null,"spread":false},{"title":"实验三.pdf <span style='color:#111;'> 459.50KB </span>","children":null,"spread":false},{"title":"实验七 特征提取与选择.docx <span style='color:#111;'> 22.34KB </span>","children":null,"spread":false},{"title":"实验五 非线性分类器.docx <span style='color:#111;'> 45.75KB </span>","children":null,"spread":false},{"title":"实验二 概率密度函数的估计.docx <span style='color:#111;'> 32.22KB </span>","children":null,"spread":false},{"title":"Untitled2.ipynb <span style='color:#111;'> 5.53KB </span>","children":null,"spread":false},{"title":"Untitled.ipynb <span style='color:#111;'> 79.24KB </span>","children":null,"spread":false},{"title":"实验六 非参数判别分类方法.docx <span style='color:#111;'> 17.84KB </span>","children":null,"spread":false},{"title":"实验八 聚类分析.docx <span style='color:#111;'> 16.32KB </span>","children":null,"spread":false},{"title":"实验四.pdf <span style='color:#111;'> 1.34MB </span>","children":null,"spread":false},{"title":"实验一.pdf <span style='color:#111;'> 1.72MB </span>","children":null,"spread":false},{"title":"实验五.pdf <span style='color:#111;'> 715.83KB </span>","children":null,"spread":false},{"title":"实验二.pdf <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Untitled-checkpoint.ipynb <span style='color:#111;'> 79.24KB </span>","children":null,"spread":false},{"title":"Untitled2-checkpoint.ipynb <span style='color:#111;'> 5.53KB </span>","children":null,"spread":false},{"title":"Untitled5-checkpoint.ipynb <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"Untitled6-checkpoint.ipynb <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false},{"title":"Untitled3-checkpoint.ipynb <span style='color:#111;'> 275.10KB </span>","children":null,"spread":false},{"title":"Untitled1-checkpoint.ipynb <span style='color:#111;'> 87.30KB </span>","children":null,"spread":false},{"title":"Untitled4-checkpoint.ipynb <span style='color:#111;'> 38.28KB </span>","children":null,"spread":false}],"spread":false},{"title":"实验八.pdf <span style='color:#111;'> 1.42MB </span>","children":null,"spread":false},{"title":"实验三 朴素贝叶斯分类器与贝叶斯网络模型.docx <span style='color:#111;'> 69.15KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明