WR-TSS(天气雷达时间序列模拟)是一组使用高斯信号模型模拟天气雷达时间序列数据的函数。 这些类型的模拟通常用于模拟天气或地物杂波时间序列以测试信号处理算法。 有几种标准类型的模拟器可用于此目的。 Zrnić(或频谱)模拟器基于在频谱域中对高斯信号进行建模,然后使用逆 FFT 来生成时间序列。 Frehlich(或自相关)模拟器对高斯自相关建模,然后使用 FFT 从自相关计算频谱。 使用比所需样本数长的模拟长度很重要,以避免循环卷积与逆 FFT 的影响。 两种模拟器通常都使用固定的模拟长度来解决圆形卷积效应,但是当使用特别窄的谱宽时,这些固定长度有时是不够的。 WR-TSS中包含的八个功能根据所需信号的信号参数计算仿真长度。 这使得模拟器在窄谱宽度下更准确,并且对于某些所需信号参数集也更快。 这些函数有频谱 (sp) 和自相关 (ac) 版本。 大多数情况下推荐使用频谱版本,因为如果直
2025-12-18 10:28:16 17KB matlab
1
在数据分析和统计建模领域,贝叶斯突变点检测是一种重要的技术,它用于识别时间序列数据中的结构变化或突变点。这种技术基于贝叶斯统计理论,可以帮助研究人员理解数据集随时间的变化模式,特别是在生物信息学、金融、工程等领域有着广泛应用。本资料包包含与贝叶斯突变点检测及时间序列分解相关的Matlab实现,以及可能的Python和R语言版本。 1. **贝叶斯突变点检测**: 贝叶斯方法的核心在于使用先验知识更新对后验概率的估计。在突变点检测中,这一方法用于估计数据序列中发生突变的潜在位置。通过构建适当的贝叶斯模型,我们可以计算在每个时间点上存在突变的后验概率。这通常涉及到计算不同假设(有无突变)下的似然函数,并结合先验概率进行贝叶斯更新。Matlab中,可以使用如`BayesianChangePoint`等工具箱来实现这个过程。 2. **时间序列分解**: 时间序列分解通常包括趋势分析、季节性分析和随机性分析,目的是将复杂的时间序列拆分为更简单的成分,便于理解和预测。在Matlab中,可以使用`decompose`函数或者自定义算法进行这些操作。例如,平滑法(如移动平均法)、季节性分解Loess(STL)和状态空间模型等都是常用的方法。 3. **Matlab实现**: 提供的`Matlab`目录可能包含了用于执行贝叶斯突变点检测和时间序列分解的脚本和函数。用户可以通过加载数据,调用相应的函数,可视化结果,从而进行分析。注意,Matlab代码通常需要对Matlab环境有一定的熟悉度,包括矩阵运算、数据处理和图形绘制等方面的知识。 4. **Python和R实现**: 除了Matlab,文件列表中还提到了Python和R的实现。这两个开源语言也有各自的库支持贝叶斯突变点检测,如Python的`ruptures`库和R的`changepoint`包。Python实现可能更注重效率和可扩展性,而R实现则可能提供更丰富的统计分析功能。使用者可以根据自己的需求和熟悉程度选择合适的技术栈。 5. **README.md**: 这个文件通常会提供项目简介、安装指南、使用示例和可能的注意事项,是理解整个工具包的重要入口。通过阅读此文件,用户可以快速掌握如何运行和利用提供的代码资源。 这个资料包为研究者和数据分析人员提供了一套全面的工具,用于在Matlab、Python和R环境中进行贝叶斯突变点检测和时间序列分解。通过学习和应用这些工具,不仅可以深入理解数据集的变化特性,还能进一步进行预测和决策支持。
2025-12-13 17:16:14 6.09MB matlab
1
内容概要:本文详细介绍了一个基于MATLAB实现的自回归移动平均模型(ARMA)用于股票价格预测的完整项目实例。项目涵盖从数据获取、预处理、平稳性检验、模型阶数确定、参数估计、模型拟合与残差分析,到样本外预测、结果可视化及模型优化的全流程。重点阐述了ARMA模型在金融时间序列预测中的应用,结合MATLAB强大的计算与绘图功能,系统展示了如何应对股票数据的高噪声、非平稳性、过拟合等挑战,并提供了部分代码示例,如差分处理、AIC/BIC阶数选择、残差检验和预测误差计算等,帮助读者理解和复现模型。项目还强调了模型的可扩展性与自动化实现能力,为后续引入ARIMA、GARCH或多元模型奠定基础。; 适合人群:具备一定统计学基础和MATLAB编程经验,从事金融数据分析、量化投资、风险管理等相关工作的研究人员、学生及从业人员(尤其是工作1-3年的初级至中级数据分析师或金融工程师)。; 使用场景及目标:① 掌握ARMA模型在股票价格预测中的建模流程与关键技术细节;② 学习如何利用MATLAB进行金融时间序列分析与可视化;③ 构建可用于量化交易策略开发、投资决策支持和风险预警的预测模型;④ 为深入学习更复杂的时序模型(如ARIMA、GARCH、LSTM)打下实践基础。; 阅读建议:建议结合文中提供的代码片段与完整项目文件(如GUI设计、详细代码)同步运行和调试,重点关注数据预处理、平稳性检验与模型阶数选择等关键步骤,并尝试在不同股票数据上复现实验,以加深对模型性能与局限性的理解。
1
内容概要:本文档介绍了在MATLAB平台上实现自回归移动平均模型(ARMA)的时间序列预测方法及其具体实现步骤。文中详细阐述了ARMA模型的基本概念、应用场景和优势,并提供了完整示例代码。主要内容涵盖时间序列数据处理、ARMA模型的选择与构建、模型参数估计及优化,还包括完整的预测与结果可视化展示,以及模型的有效性验证。此外,文档列举了该模型在金融市场、能源管理、气象预报等多个领域的广泛应用。 适用人群:对时间序列分析感兴趣的研究人员及工程师;熟悉MATLAB并且有志于深入了解或应用ARMA模型进行预测工作的专业人士。 使用场景及目标:本教程适用于所有希望用MATLAB来进行时间序列数据分析的人群。通过学习本课程,学员不仅可以掌握ARMA模型的工作原理,还能将其运用到实际工作中去解决具体问题。 其他说明:ARMA是一种常见的统计方法,在许多学科都有重要用途。然而,在某些情况下,时间序列可能是非线性的或带有突变点,这时可能需要考虑扩展模型,比如ARIMA或ARCH/GARCH族等,以达到更好效果。
2025-12-11 16:16:24 34KB ARMA模型 MATLAB System Identification
1
时间序列分析的理论与应用综述 时间序列分析提供的理论和方法是进行大型高难度综合课题研究的工具之一。其预测和评估技术相对比较完善,其预测情景也比较明确。近年来已有很多学者对于时间序列的研究取得了极其丰硕的成果,有的甚至在时间序列分析方法的基础上,研究出新的预测方法,在应用中求创新求发展。 时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻划某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界之目的,而且运用时间序列模型还可以预测和控制现象的未来行为。许多经济、金融、商业等方面的数据都是时间序列数据,对这些数据进行分析、处理和研究,从中挖掘有用信息是广大工作者当前研究的焦点之一。 目前时间序列的预测和评估技术相对比较完善,其预测情景也比较明确,综合他人的智慧、借助各种资料,本文介绍了时间序列分析的基本理论及其进展,阐述了它目前的应用领域及未来的发展趋势。 时间序列分析产生的背景7000年前的古埃及人把尼罗河涨落的情况逐天记录下来,就构成所谓的时间序列。对这个时间序列长期的观察使他们发现尼罗河的涨落非常有规律。象古埃及人一样按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列,对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 早期的时间序列分析通常都是通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。古埃及人发现尼罗河泛滥的规律就是依靠这种分析方法。但随着研究领域的不断拓广,在很多研究领域中随机变量的发展通常会呈现出非常强的随机性,人们发现依靠单纯的描述性时序分析已不能准确地寻找出随机变量发展变化的规律,为了更准确地估计随机序列发展变化的规律,从20世纪20年代开始,学术界利用数理统计学原理分析时间序列,研究的重心从表面现象的总结转移到分析序列值内在的相关关系上,由此开辟了一门应用统计学科——时间序列分析[1]。 时间序列分析方法最早起源于1927年数学家Yule提出建立自回归模型(AR模型)来预测市场变化的规律。1931年,另一位数学家在AR模型的启发下,建立了移动平均模型(MA模型),初步奠定了时间序列分析方法的基础。20世纪60年代后,时间序列分析方法迈上了一个新的台阶,在工程领域方面的应用非常广泛。近几年,随着计算机技术和信号处理技术的迅速发展,时间序列分析理论和方法更趋完善。 时间序列分析的基本思想与理论进展不论是经济领域中每年的产值、国民收入、某一商品在某一市场上的销量、价格变动等,或是社会领域中某一地区的人口数、医院患者人数、铁路客流量等,还是自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。根据这些时间序列,较精确地找出相应系统的内在统计特性和发展规律311性,从中提取人类所需要的准确信息的方法就是时间序列分析。它是一种根据动态数据揭示系统动态结构和规律的统计方法。其基本思想是根据系统的有限长度的运行记录,通过对记录的分析和研究,揭示系统的内在规律和发展趋势。 时间序列分析的应用领域非常广泛,包括经济领域、金融领域、商业领域、社会领域、自然科学领域等等。在这些领域中,时间序列分析都可以应用于对系统的预测和控制,例如对股票市场的预测,对经济指标的预测,对气候的预测等等。 时间序列分析的优点很多,例如它可以对系统的内在规律和发展趋势进行揭示,可以对系统的未来行为进行预测,可以对系统的风险进行评估等等。但是,时间序列分析也存在一些缺点,例如它需要大量的数据支持,需要复杂的算法和模型,需要对系统的深入了解等等。 时间序列分析的发展趋势非常明确,例如随着计算机技术和信号处理技术的进一步发展,时间序列分析理论和方法将更加完善;随着数据挖掘技术的发展,时间序列分析将更加关注数据挖掘和知识发现;随着人工智能和机器学习技术的发展,时间序列分析将更加关注智能化和自动化等等。 时间序列分析是一种非常重要的统计方法,它可以对系统的内在规律和发展趋势进行揭示,可以对系统的未来行为进行预测,可以对系统的风险进行评估等等。它的应用领域非常广泛,包括经济领域、金融领域、商业领域、社会领域、自然科学领域等等。
2025-12-09 02:36:57 110KB
1
多变量时间序列UEA数据,每个数据集文件夹下仅包含xxx_TRAIN.arff和xxx_TEST.arff两个文件,同时将文件中的%注释语句删除,使其能够直接通过scipy.io中的arff.loadarff方法读取数据。文件结构如下: New_Multivariate_arff: - ArticularyWordRecognition - ArticularyWordRecognition_TEST.arff - ArticularyWordRecognition_TRAIN.arff - AtrialFibrillation - AtrialFibrillation_TEST.arff - AtrialFibrillation_TRAIN.arff - BasicMotions - BasicMotions_TEST.arff - BasicMotions_TRAIN.arff ...
2025-11-28 20:33:09 854.71MB 数据集 时间序列 多变量时间序列
1
本文整理了五个常用的多变量时间序列异常检测数据集,包括SMD、SMAP/MSL、SWaT和WADI数据集,并提供了详细的标准化处理代码。这些数据集广泛应用于时间序列异常检测的基准测试,涵盖了不同领域的数据,如服务器机器数据、航天器遥测数据和水处理系统数据。文章详细介绍了每个数据集的具体信息、下载方式以及标准化处理步骤,包括时间格式统一、标签处理等。此外,还提供了针对MSL、SMAP、SMD、WADI和SWaT数据集的Python处理代码,帮助研究人员快速实现数据预处理。
2025-11-17 16:36:25 30MB 软件开发 源码
1
内容概要:本文详细讨论了深度学习在时间序列预测领域的研究现状和发展趋势,强调由于物联网等技术的快速发展,传统的参数模型和机器学习算法逐渐难以满足大数据时代的需求。文章首先介绍了时间序列的基本特性、常用数据集和评价指标。然后重点阐述了三大类深度学习算法——卷积神经网络(CNN)、循环神经网络(RNN)及其变体LSTM/GRU、Transformers系列(如Informer、FEDformer和Conformer)的工作原理及其在不同类型的时间序列预测任务中的应用成效和局限性。最后,文章提出了关于超参数优化、适应不规则数据、结合图神经网络以及创新损失函数等方面的未来研究方向。 适用人群:对深度学习有兴趣的专业研究人员和技术开发者,特别是那些从事数据分析、金融建模、物联网应用等领域的人士。 使用场景及目标:帮助读者理解时间序列预测中的现有技术和未来发展的可能性。通过对不同类型预测任务的分析,为相关领域的实际工程项目提供指导和支持。 其他说明:文中引用了多个学术文献作为论据支撑,并提及了一些前沿研究成果,比如通过引入自然优化算法提升预测精度。
1
内容概要:本文详细介绍了一个基于双向长短期记忆网络(BiLSTM)与Transformer编码器融合的多输入多输出时间序列预测模型的项目实例。该模型结合BiLSTM对局部时序上下文的双向捕捉能力与Transformer自注意力机制对长距离依赖的全局建模优势,有效提升复杂多变量时间序列的预测精度与泛化能力。项目涵盖模型架构设计、关键技术挑战分析及解决方案,并提供了基于PyTorch的代码实现示例,展示了从数据输入到多输出预测的完整前向传播过程。该方法适用于金融、工业、环境监测等多个需联合预测多变量的现实场景。; 适合人群:具备一定深度学习基础,熟悉RNN、LSTM和Transformer结构,从事时间序列预测相关研究或开发的算法工程师、数据科学家及研究生。; 使用场景及目标:①解决多变量时间序列中特征提取难、长距离依赖建模弱的问题;②实现多个目标变量的联合预测,提升系统整体预测一致性;③应用于设备预测性维护、金融市场分析、能源调度等高价值场景;④学习先进模型融合思路,掌握BiLSTM与Transformer协同建模技术。; 阅读建议:建议结合代码与模型架构图深入理解信息流动过程,重点关注BiLSTM与Transformer的衔接方式、位置编码的引入以及多输出头的设计。在学习过程中可尝试在实际数据集上复现模型,并通过调整超参数优化性能。
1
内容概要:介绍了一种使用MATLAB实现EMD-KPCA-LSTM、EMD-LSTM与传统LSTM模型进行多变量时间序列预测的方法。从光伏发电功率的实际数据出发,在生成带噪声信号的基础上,逐步探讨了利用经验模态分解处理数据非稳性、主成分分析实现降维处理和构建LSTM预测模型的技术路径,提供了全面细致的操作指导。 适用人群:针对有一定编程能力和数学理论背景的研究人员和技术开发者,尤其适用于那些想要探索先进预测建模并在实际应用案例中有兴趣的人士。 使用场景及目标:主要目的是为了更好地理解和优化针对波动较大或不稳定时间序列的预测能力。通过比较各模型预测表现,找到最适合特定应用场景的最佳配置方案,从而支持相关领域的决策制定过程。 其他说明:文中附带了完整的工作实例、步骤讲解与源代码示例,有助于用户复现实验流程并进行相应的调整改进,进而提高研究效率或促进新项目启动。
2025-11-01 17:12:01 30KB MATLAB LSTM EMD KPCA
1