内容概要:本文详细讨论了深度学习在时间序列预测领域的研究现状和发展趋势,强调由于物联网等技术的快速发展,传统的参数模型和机器学习算法逐渐难以满足大数据时代的需求。文章首先介绍了时间序列的基本特性、常用数据集和评价指标。然后重点阐述了三大类深度学习算法——卷积神经网络(CNN)、循环神经网络(RNN)及其变体LSTM/GRU、Transformers系列(如Informer、FEDformer和Conformer)的工作原理及其在不同类型的时间序列预测任务中的应用成效和局限性。最后,文章提出了关于超参数优化、适应不规则数据、结合图神经网络以及创新损失函数等方面的未来研究方向。 适用人群:对深度学习有兴趣的专业研究人员和技术开发者,特别是那些从事数据分析、金融建模、物联网应用等领域的人士。 使用场景及目标:帮助读者理解时间序列预测中的现有技术和未来发展的可能性。通过对不同类型预测任务的分析,为相关领域的实际工程项目提供指导和支持。 其他说明:文中引用了多个学术文献作为论据支撑,并提及了一些前沿研究成果,比如通过引入自然优化算法提升预测精度。
1
内容概要:本文详细介绍了一个基于双向长短期记忆网络(BiLSTM)与Transformer编码器融合的多输入多输出时间序列预测模型的项目实例。该模型结合BiLSTM对局部时序上下文的双向捕捉能力与Transformer自注意力机制对长距离依赖的全局建模优势,有效提升复杂多变量时间序列的预测精度与泛化能力。项目涵盖模型架构设计、关键技术挑战分析及解决方案,并提供了基于PyTorch的代码实现示例,展示了从数据输入到多输出预测的完整前向传播过程。该方法适用于金融、工业、环境监测等多个需联合预测多变量的现实场景。; 适合人群:具备一定深度学习基础,熟悉RNN、LSTM和Transformer结构,从事时间序列预测相关研究或开发的算法工程师、数据科学家及研究生。; 使用场景及目标:①解决多变量时间序列中特征提取难、长距离依赖建模弱的问题;②实现多个目标变量的联合预测,提升系统整体预测一致性;③应用于设备预测性维护、金融市场分析、能源调度等高价值场景;④学习先进模型融合思路,掌握BiLSTM与Transformer协同建模技术。; 阅读建议:建议结合代码与模型架构图深入理解信息流动过程,重点关注BiLSTM与Transformer的衔接方式、位置编码的引入以及多输出头的设计。在学习过程中可尝试在实际数据集上复现模型,并通过调整超参数优化性能。
1
内容概要:介绍了一种使用MATLAB实现EMD-KPCA-LSTM、EMD-LSTM与传统LSTM模型进行多变量时间序列预测的方法。从光伏发电功率的实际数据出发,在生成带噪声信号的基础上,逐步探讨了利用经验模态分解处理数据非稳性、主成分分析实现降维处理和构建LSTM预测模型的技术路径,提供了全面细致的操作指导。 适用人群:针对有一定编程能力和数学理论背景的研究人员和技术开发者,尤其适用于那些想要探索先进预测建模并在实际应用案例中有兴趣的人士。 使用场景及目标:主要目的是为了更好地理解和优化针对波动较大或不稳定时间序列的预测能力。通过比较各模型预测表现,找到最适合特定应用场景的最佳配置方案,从而支持相关领域的决策制定过程。 其他说明:文中附带了完整的工作实例、步骤讲解与源代码示例,有助于用户复现实验流程并进行相应的调整改进,进而提高研究效率或促进新项目启动。
2025-11-01 17:12:01 30KB MATLAB LSTM EMD KPCA
1
内容概要:本文档提供了基于经验模态分解(EMD)、核主成分分析(KPCA)和长短期记忆网络(LSTM)的多维时间序列预测MATLAB代码实现。具体应用案例为北半球光伏功率预测,涉及的数据集包含太阳辐射度、气温、气压和大气湿度四个输入特征,以及光伏功率作为输出预测。文档详细介绍了从数据加载与预处理到EMD和KPCA处理,再到LSTM模型训练与预测的具体步骤,并进行了EMD-LSTM、EMD-KPCA-LSTM和纯LSTM模型的对比分析。此外,还强调了代码的注释清晰度和调试便利性,确保用户能够顺利运行和理解整个流程。 适用人群:适用于具有一定MATLAB编程基础和技术背景的研究人员、工程师或学生,特别是那些对时间序列预测、机器学习和光伏功率预测感兴趣的群体。 使用场景及目标:① 使用EMD、KPCA和LSTM组合模型进行多维时间序列预测;② 对比不同模型的效果,选择最优模型;③ 掌握MATLAB环境下复杂模型的构建和调优方法。 其他说明:代码已验证可行,支持本地EXCEL数据读取,附带详细的“说明”文件帮助用户快速上手。建议用户在实践中结合实际需求调整参数和模型配置,以获得最佳预测效果。
2025-11-01 16:52:20 749KB
1
内容概要:本文详细介绍了如何利用Matlab实现Transformer与双向门控循环单元(BiGRU)相结合的时间序列分类模型。文章首先阐述了Transformer的独特魅力及其在时间序列数据处理中的优势,如光伏功率预测、负荷预测和故障识别等任务。随后,逐步讲解了从数据准备、模型搭建、训练优化到最后结果展示的具体步骤。文中提供了详细的代码片段,包括数据读取、模型结构定义、训练参数设置等,并附有丰富的图表用于评估模型性能。此外,作者还分享了一些实用的小技巧和常见问题解决方案,确保新手能够顺利上手并成功运行代码。 适合人群:对时间序列数据分析感兴趣的初学者,尤其是有一定Matlab基础的研究人员和技术爱好者。 使用场景及目标:适用于需要进行时间序列分类的任务,如电力系统中的光伏功率预测、负荷预测以及设备故障诊断等。通过本篇文章的学习,读者将掌握如何构建高效的Transformer-BiGRU模型,提高预测精度。 其他说明:本文提供的代码已在Matlab 2023b及以上版本中测试通过,用户只需准备好符合要求的Excel格式数据即可直接运行。同时,代码中包含了详细的中文注释,便于理解和修改。
2025-10-21 16:36:08 1.88MB
1
关于卡尔曼滤波和维纳滤波时间序列分析的经典方法
2025-10-20 10:58:21 5.11MB 卡尔曼滤波 维纳滤波 时间序列
1
内容概要:本文档介绍了通过Python实现一种带有外源输入的非线性自回归(NARX)神经网络的方法来预测时间序列数据。整个教程涵盖从合成数据的制作到最终效果呈现的一系列步骤:具体步骤包括数据清洗与划分,利用NARX架构创建一个模型以及对其调优训练,并对训练后的模型进行了有效性检验;最后以图表形式展现了实际与预期间的比较情况。 适用人群:对于那些拥有初步机器学习经验和希望进一步了解并掌握使用深度学习技巧进行数据分析与预测工作的开发者们来说尤为有用。 使用场景及目标:适用于各种含有周期成分的数据预测任务;主要目的则是借助这一方法来探索数据间潜在规律并预测未来的走势。 其他说明:提供了所有涉及到的相关脚本供下载参考。
2025-10-17 16:30:15 34KB Python 时间序列预测 Keras 数据预处理
1
内容概要:本文档介绍了利用Google Earth Engine平台计算Landsat 8和Landsat 9卫星影像的叶面积指数(LAI)的方法。首先定义了时间范围为2022年到2024年,并设置了云量覆盖小于10%的筛选条件。然后通过影像集合操作,对每个影像进行了波段选择、反射率转换、NDVI(归一化植被指数)、EVI(增强型植被指数)计算,最终基于EVI得到LAI。为了确保数据的时间连续性和完整性,以8天为间隔创建了时间序列,并对每个时间段内的最大值进行合成,同时去除了无有效数据的影像。最后,绘制了LAI和NDVI的时间序列图表,以便于分析特定区域在指定月份内的植被变化情况。 适合人群:从事地理信息系统、遥感科学或生态学研究的专业人士,以及对植被动态监测感兴趣的科研工作者。 使用场景及目标:①用于研究植被生长周期与环境因素之间的关系;②评估不同季节或年度间的植被覆盖变化;③为农业、林业管理和环境保护提供科学依据。 其他说明:此文档提供了详细的代码示例,用户可以根据自身需求调整参数设置,如时间范围、空间范围和云量阈值等,以适应不同的研究目的。此外,建议用户熟悉Google Earth Engine平台的基本操作和Python/JavaScript编程语言,以便更好地理解和应用这些代码。
2025-10-13 21:45:27 2KB 遥感影像处理 LANDSAT NDVI Leaf
1
时间序列预测是数据分析领域的重要部分,它涉及到对历史数据序列的建模,以预测未来的趋势。长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),在处理时间序列问题,尤其是序列中的长期依赖性时表现优异。本项目利用LSTM进行时间序列预测,并以MATLAB为开发环境,要求MATLAB版本为2018b或以上。 MATLAB是一种广泛使用的编程语言和计算环境,尤其在数学、科学和工程领域中。在LSTM的时间序列预测中,MATLAB提供了丰富的工具箱和函数支持,使得模型构建、训练和验证过程更为便捷。项目包含以下主要文件: 1. `main.m`:这是主程序文件,负责调用其他辅助函数,设置参数,加载数据,训练模型,以及进行预测和性能评估。 2. `fical.m`:可能是一个自定义的损失函数或者模型评估函数,用于在训练过程中度量模型的预测效果。 3. `initialization.m`:可能包含了模型参数的初始化逻辑,如权重和偏置的随机赋值,这在训练LSTM模型时至关重要。 4. `data_process.m`:这个文件处理原始数据,将其转化为适合输入到LSTM模型的形式。可能包括数据清洗、归一化、分序列等步骤。 5. `windspeed.xls`:这是一个包含风速数据的Excel文件,可能是用于预测的时间序列数据源。时间序列数据可以是各种形式,如股票价格、气温、电力消耗等。 在模型的评估中,使用了多个指标: - **R²(决定系数)**:R²值越接近1,表示模型拟合数据的程度越高;越接近0,表示模型解释数据的能力越弱。 - **MAE(平均绝对误差)**:衡量模型预测值与真实值之间的平均偏差,单位与目标变量相同,越小说明模型精度越高。 - **MSE(均方误差)**:是MAE的平方,更敏感于大误差,同样反映了模型的预测精度。 - **RMSE(均方根误差)**:MSE的平方根,与MSE类似,但其单位与目标变量一致。 - **MAPE(平均绝对百分比误差)**:以百分比形式衡量误差,不受目标变量尺度影响,但不适用于目标变量为零或负的情况。 通过这些评价指标,我们可以全面了解模型的预测性能。在实际应用中,可能需要根据具体业务需求调整模型参数,优化模型结构,以达到最佳预测效果。此外,对于时间序列预测,还可以考虑结合其他技术,如自回归模型(AR)、滑动窗口预测、集成学习等,以进一步提升预测准确性和稳定性。
2025-09-28 15:57:27 25KB 网络 网络 matlab lstm
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 想轻松敲开编程大门吗?Python 就是你的不二之选!它作为当今最热门的编程语言,以简洁优雅的语法和强大的功能,深受全球开发者喜爱。该文档为你开启一段精彩的 Python 学习之旅。从基础语法的细致讲解,到实用项目的实战演练,逐步提升你的编程能力。无论是数据科学领域的数据分析与可视化,还是 Web 开发中的网站搭建,Python 都能游刃有余。无论你是编程小白,还是想进阶的老手,这篇博文都能让你收获满满,快一起踏上 Python 编程的奇妙之旅!
2025-09-17 16:37:42 5.29MB Python
1