一个地区接收到的降雨量是评估水的可用性以满足农业、工业、灌溉、水力发电和其他人类活动的各种需求的重要因素。 在我们的研究中,我们考虑了对印度旁遮普省降雨数据进行统计分析的季节性和周期性时间序列模型。 在本研究论文中,我们应用季节性自回归综合移动平均和周期自回归模型来分析旁遮普省的降雨数据。 为了评估模型识别和周期性平稳性,使用的统计工具是 PeACF 和 PePACF。 对于模型比较,我们使用均方根百分比误差和预测包含测试。 这项研究的结果将为地方当局制定战略计划和适当利用可用水资源提供帮助。
2024-11-25 06:16:56 384KB Test
1
NLP医疗保健 使用MIMIC III中的结构化和非结构化数据预测30天ICU再次入院 数据处理 结构化数据 结构化网络的ETL过程可以在结构目录中找到在structured_etl_part1.scala和structured_etl_part2.py 非结构化数据 非结构化数据的所有数据处理脚本都包含在dataproc目录中。 使用data_processing_script.py处理NOTEEVENTS以获取单词向量。 使用get_discharge_summaries.py编写放电汇总 使用build_vocab.py从放电摘要构建vocab。 使用word_embeddings.py在所有单词上训练单词嵌入。 使用extract_wvs.py中的gensim_to_embeddings方法,用我们的vocab编写经过训练的单词嵌入。 造型 结构化网络 在struc_net
2024-01-12 16:29:11 68KB Python
1
可实现对二维数据的聚类,单径或多径瑞利衰落信道仿真,可以广泛的应用于数据预测及数据分析。
MATAB神经网络源码及数据分析GRNN-数据预测
2023-08-05 20:28:21 5KB
1
如果您正在寻找一份完整的R语言数据分析、数据预测和机器学习案例,那么我们的资源库将为您提供一切所需。本资源库提供了一系列案例,包括数据可视化、数据清洗、机器学习模型构建和数据预测等内容。我们的案例旨在帮助您更好地了解R语言的使用和机器学习的基础知识。 我们的资源库包括以下主题: 数据可视化:使用ggplot2包和其他R语言可视化工具,展示如何将数据可视化,从而更好地理解数据并做出更明智的决策。 数据清洗:展示如何使用dplyr包和其他数据清洗工具来清洗和准备数据,使其可以用于机器学习模型的训练。 机器学习模型构建:使用caret包和其他机器学习工具,构建和训练各种类型的机器学习模型,包括回归、分类和聚类模型等。 数据预测:展示如何使用机器学习模型来预测未来数据,并对预测结果进行评估和优化。 每个案例都包含完整的代码和数据集,可以帮助您更好地了解每个步骤的细节和操作。我们的资源库适合各种级别的用户,包括初学者和有经验的用户。您可以根据自己的兴趣和需求选择不同的主题,并按照自己的步骤和想法来运行代码和修改案例。 如果正在寻找一份完整的R语言数据分析、数据预测和机器学习案例,
2023-05-24 10:51:57 2KB r语言 数据分析 机器学习
1
matlab分时代码BikeShare预测 使用自行车共享数据预测将预订的自行车数量 CMSC 678-机器学习-2016年秋季-最终项目 学生姓名: Phanindra Kumar Kannaji(pkanna1) Venkata Rami Reddy Bujunuru(bo26494) 项目文件包括以下部分: 数据:自行车每年共享数据和天气数据单个文件,并最终生成带有完整组合数据的.mat文件。 bike_ .csv 天气_ .csv bikeShareData.mat-整个数据 images:不同图的输出,其文件名指示所使用的算法,并在运行时设置参数。 matlab:matlab代码,由我们编写的代码和少量自动生成的代码组成。 幻灯片:我们的演示幻灯片和最终论文。 自述文件和自述文件:* this Matlab代码: dataExtract.m:一种功能,用于从自行车共享数据和天气数据中提取数据,并根据时间以小时为基础将它们组合在一起。 dataCombine.m:这是要合并来自多年的数据,并进行预处理和后处理步骤以对数据进行分类和组织,然后再将其提供
2023-04-27 10:11:37 84.64MB 系统开源
1
2023-04-13 09:25:21 6KB rbf
1
Elman神经网络的数据预测—电力负荷预测模型参考源码。 说明:用MATLAB实现。
2023-04-12 15:13:11 2KB MATLAB 预测模型 Elman神经网络
1
【BP预测】基于帝国企鹅算法优化BP神经网络实现数据预测附matlab代码
2023-03-28 15:05:44 837KB
1
使用Python实现模糊神经网络(FNN)用于数据预测,压缩包中源码FNN.py主要用于使用训练数据集进行模型训练,生成对应的训练后模型参数,test.py主要用于利用训练好的模型对测试数据集进行预测,输出结果包括MAE、MAPE等误差值以及预测差值的分布情况等,train.csv为训练数据集,test.csv为测试数据集,.npy文件为训练后生成的隶属度函数中心点、宽度向量、权值等参数。
2023-03-24 20:02:16 7KB 模糊神经网络 FNN 数据预测 Python
1