为提高在电力网载波通信系统中发射端低通滤波器的频率响应和线性度, 同时也为了节省成本, 文中给出了把低通滤波器放在芯片里面, 并通过使用电阻和MOS管级联来组成一个可变电阻, 同时把MOS管放在反馈系统中来提高低通滤波器的线性度的低通滤波器的设计方法。 在电力网载波通信系统中,发射端的低通滤波器扮演着至关重要的角色,其性能直接影响到信号传输的质量和稳定性。为了提升频率响应和线性度,同时降低成本,文章提出了一种创新的设计方法——将低通滤波器集成在芯片内部,采用电阻和MOS管级联形成可变电阻,并将MOS管置于反馈系统中以提升滤波器的线性度。 低通滤波器通常有开关电容型和连续时间型两种类型。开关电容型滤波器虽然能提供精确的截止频率,但由于采样特性需要额外的抗混叠和输出平滑滤波器,且易受时钟馈通和电荷注入影响导致线性度下降。相比之下,连续时间型滤波器更受欢迎,因为它避免了这些缺点。 文章聚焦于连续时间型低通滤波器,特别是R-MOS-C-Opamp结构,它使用电阻和MOS管构建可变电阻,降低了芯片面积并允许自动调节截止频率。其中,MOS管被放置在反馈系统中,增强了线性度。为实现频率的自动调节,设计中采用了开关电容电路,以精确控制时间常数,形成主从型调节网络。 实现可变电阻的电路设计包括差分型和改进型R-MOS结构。差分型可变电阻由四个线性区的MOS管构成,但在实际应用中,MOS管间的不匹配会影响线性度。改进型R-MOS结构通过分压作用减小MOS管两端电压,提高线性度。 高线性度低通滤波器的设计策略是运用反馈技术。一阶滤波器结构中,MOS管和运放组成的积分器形成反馈环路,通过减小MOS管的Vds来提高线性度。然而,随着输入频率的升高,这种提高线性度的效果会减弱。为解决这个问题,文章提出了自动调节电路,利用开关电容实现精确时间常数控制,形成动态调节网络。 最终,设计出的四阶切比雪夫Ⅰ型低通滤波器结合了线性度提高技术、自动调节技术和动态范围优化技术,其结构中包含了电流舵MOS管组成的可变电阻,以满足电力网载波通信系统的指标需求。 通过这种方式,设计出的低通滤波器不仅提高了频率响应和线性度,还实现了频率的自动调节,降低了成本,为电力网载波通信系统提供了更高效、稳定的信号处理解决方案。
1
在图像处理领域,图片相似度比较是一个常见的任务,特别是在计算机视觉、内容识别和图像检索等应用中。本篇文章将深入探讨使用C#结合OpenCVSharp库实现图片相似度的处理方法,包括SSIM(结构相似指数)、PSNR(峰值信噪比)以及灰度和全彩直方图比较。 我们来看SSIM(Structural Similarity Index)。这是一种衡量两张图片之间结构信息相似程度的指标,考虑了亮度、对比度和结构因素。在C#中使用OpenCVSharp,你可以通过计算两幅图像的均值、方差和互相关来求解SSIM。这种方法适用于对细节和结构敏感的场景,比如视频编码和质量评估。 PSNR(Peak Signal-to-Noise Ratio)是衡量图像质量的另一个标准,它是信号功率与噪声功率的比值的对数。在图像处理中,通常以分贝(dB)为单位表示。PSNR越高,图像的质量越好。在C#中,可以通过计算两个图像的均方误差(MSE),然后取其倒数的负对数得到PSNR。 接下来,我们将讨论灰度直方图比较。灰度直方图反映了图像中不同灰度级出现的频率,直观地表达了图像的亮度分布。在比较两张图片时,可以计算它们的直方图并进行相似性分析,如计算归一化交叉熵或使用直方图匹配算法。在C#和OpenCVSharp中,可以使用`cv::calcHist`函数获取直方图,并通过比较这两个直方图的差异来评估相似度。 RGB三通道全彩直方图比较扩展了灰度直方图的概念,考虑了红、绿、蓝三个颜色通道的信息。每张彩色图像有三个直方图,分别对应三个通道。在比较时,可以分别比较每个通道的直方图,或者将三个通道组合成一个三维直方图进行比较。OpenCVSharp提供了方便的接口来处理彩色直方图。 在实际应用中,不同的比较方法适用于不同的场景。例如,SSIM和PSNR更注重全局质量和结构一致性,而直方图比较则关注局部色彩分布。开发者可以根据具体需求选择合适的方法。在C#中,OpenCVSharp提供了丰富的API,使得在Windows环境下进行这些操作变得简单易行。 为了实践这些理论,你可以在名为"ComparePicture"的项目中编写代码,加载两幅图像,然后依次实现SSIM、PSNR、灰度直方图和全彩直方图的比较。通过实验,你可以观察哪种方法在特定情况下表现更优,并根据结果调整你的算法。 C#结合OpenCVSharp库为图片相似度处理提供了强大的工具。通过理解并运用SSIM、PSNR和直方图比较,开发者能够有效地评估和比较图像,这在各种应用场景中具有广泛的价值。在实际开发中,应根据实际需求和性能要求选择最适合的方法。
1
内容概要:IEC 61000-6-2-2019是欧洲标准,规定了工业环境中电气和电子设备的电磁兼容性(EMC)抗扰度要求。该标准适用于频率范围为0 Hz到400 GHz的设备,涵盖静电放电、射频电磁场、快速瞬变、浪涌等多种抗扰度测试。标准定义了不同端口(如外壳端口、信号/控制端口、直流和交流电源端口)的具体测试要求,并提供了性能准则以评估设备在测试期间或之后的表现。此外,标准还明确了测试条件、产品文档要求、适用性和测量不确定性等内容。; 适合人群:从事电气和电子设备设计、制造、测试的工程师和技术人员,以及需要了解工业环境电磁兼容性的相关从业人员。; 使用场景及目标:①确保电气和电子设备在工业环境中具备足够的抗电磁干扰能力;②指导制造商进行产品EMC测试,确保符合国际标准要求;③为产品委员会提供未来可能相关的测试建议,以应对新的电磁现象。; 其他说明:本标准由国际电工委员会(IEC)技术委员会77制定,取代了2005年版本。它不仅适用于新产品的开发,也可用于现有产品的改进和认证。标准详细列出了各类测试的具体参数和方法,并提供了附录A,以指导产品委员会考虑未来可能出现的电磁现象及其测试要求。
1
文章所描述的知识点主要集中在80C31微控制器在同步轨道气象卫星扫描辐射计控制器中的应用,以及对其单粒子效应敏感度的评估。以下将详细阐述与之相关的知识点。 ### 微控制器单粒子效应 在航天领域,微控制器作为控制单元被广泛应用于各类卫星和航天器中。单粒子效应(SEE)是由空间环境中的高能重离子和宇宙射线引起的,它们能够单个地影响微电子器件的功能。在微控制器内部,单粒子翻转(SEU)和单粒子锁定(SEL)是两种主要的单粒子效应。 - **单粒子翻转(SEU)**:是指当一个重离子击中微控制器中的存储单元时,可能会改变其状态,导致“软错误”,即数据位的错误状态。这种错误可以通过软件纠错进行处理,但会影响系统的可靠性和效率。 - **单粒子锁定(SEL)**:则是当单个重离子导致微控制器的某些部分产生持续的电流,从而导致器件“锁定”并失效。这是致命的,因为一旦发生,器件将无法继续工作。 ### 空间环境效应评估 同步轨道上的气象卫星会暴露在高能重离子辐射环境中,这对安装在其上的微控制器等电子器件的稳定性构成威胁。因此,进行空间环境效应评估,尤其是单粒子效应敏感度评估,对设计抗辐射的星载计算机系统至关重要。 - **辐射效应评估**:包括对微控制器进行地面模拟试验,模拟空间环境中的重离子辐射,从而分析微控制器在这些条件下可能出现的问题。 - **敏感度评估**:通过试验获得微控制器在特定辐射水平下的错误截面与线性能量传递(LET)的关系曲线,以此预计微控制器在实际空间环境中的单粒子翻转率。 ### 评估方法 评估通常涉及使用串列静电加速器,该设备可以模拟空间环境中的高能重离子辐射。在试验中,将微控制器暴露在不同能量的重离子辐射下,记录下其发生的翻转数量和类型。 - **试验器件**:研究中采用了Intel公司生产的CHMOS工艺结构的80C31微控制器。 - **检测系统**:包括STD工业控制机、80C31单片机和检测/驱动板。软件部分由两部分组成:一部分是80C31自测试程序,用于检测存储单元的状态;另一部分是STD机检测程序,负责控制测试过程并处理数据。 - **检测过程**:使用棋盘图案作为测试模式,可以较为准确地检测到存储单元的翻转情况。通过采取特定措施降低检测误差,以获得可靠的试验数据。 ### 结论 单粒子效应是影响微控制器在空间环境中稳定性的关键因素。通过地面模拟试验,可以预先评估微控制器对重离子辐射的敏感度,从而对星载计算机系统的抗辐射设计起到指导作用。这对于提高卫星系统的可靠性和寿命具有重要意义。通过精确的测试和模拟,可以确保卫星设备在极端的空间环境中的长期稳定运行。
2025-08-25 18:27:37 342KB 空间环境
1
某宝同款度盘不限速后台系统源码 开心版 资源简介 搭建某宝同款度盘不限速后台系统源码开心版,验证已被我去除,两个后端系统,账号和卡密系统 第一步安装宝塔,部署卡密系统,需要环境php7.4 把源码丢进去,设置php7.4,和伪静态为thinkphp直接访问安装就行 第二步然后接着部署账号系统,这个更加简单,赋予执行权限后 直接./start.sh直接就启动了 卡密验证系统可正常搭建,但账号管理系统看着是java的。 有需要的自己下载瞅瞅吧
2025-08-21 23:18:49 22.82MB
1
vs2022调试好的rtklib,打开就能用,rtklib最新版本调试,另外需要基于RTKLIB的部分模糊度固定算法请加qq:762270774,部分模糊度固定算法,最小协方差因子筛星算法,需实现GNSS算法可加Q
2025-08-21 17:49:32 358.45MB
1
针对锚杆内应力对锚杆直线度的影响,为保证锚杆施工工艺的顺利进行,对比了不同轧制工艺试验数据,从锚杆的轧制工艺出发,将传统的冷轧工艺改为感应加热温轧工艺。以材质为Q345B的R25中空锚杆体为例,对比了冷轧和感应加热温轧工艺下的锚杆直线度试验数据。研究表明:冷轧工艺下R25锚杆的直线度为3~6 mm,最大拱高为1.5~3.0 mm;温轧工艺下R25锚杆的直线度为0.4~3.0 mm,最大拱高为0.2~1.5 mm。相比较,感应加热温轧工艺下锚杆的直线度显著提高。在岩土锚固锚杆支护中,采用感应加热温轧工艺加工的中空锚杆,直线度更好,更能有效保证施工工艺的顺利进行,为工程实践提供一定指导意义。
2025-08-18 20:07:16 366KB 中空锚杆 冷轧工艺 感应加热
1
小度wifi雷凌驱动是一款好用的无线网驱动程序,用户要想使用无线网来进行上网操作,就需要安装此驱动程序了,欢迎有需要的朋友下载体验!使用说明小度wifi使用的是雷凌的MT7601芯片,如果百度的驱动不能使用,可以下载雷凌芯片的官方驱动。绝对可以正常,欢迎下载体验
2025-08-18 14:42:31 7.69MB 小度wifi wifi驱动
1
天然气水合物是一种富含甲烷的固态化合物,广泛存在于深海沉积物及陆地永久冻土区的高压低温环境中。由于其储量巨大、分布广泛,被认为是21世纪最具潜力的清洁能源之一。在天然气水合物的开发过程中,降压开采是一种常用的方法,它依赖于降低水合物储层的压力,使其稳定条件被打破,从而释放其中的甲烷气体。 COMSOL是一种先进的多物理场仿真软件,它能够模拟包括热传递、流体流动、结构应力等多方面的物理现象。在天然气水合物的降压开采研究中,可以利用COMSOL软件建立热-流-固多场耦合模型,实时跟踪水合物分解、甲烷释放、储层孔隙度和渗透率变化等过程,从而对开采效率和安全性做出科学评估。 在模拟过程中,储层孔隙度和渗透率的演化是评价开采效果的重要指标。孔隙度代表了岩石中孔隙的体积占岩石总体积的比例,渗透率则反映了流体在储层中流动的能力。在开采初期,储层的孔隙度和渗透率较低,但随着水合物的分解和甲烷气体的释放,孔隙度会逐渐增大,渗透率也会得到提升,从而提高开采效率。 水平井筒环空高压充填石英砂层是一种提高开采效率的技术。在该技术中,通过在水平井筒和储层之间充填石英砂等支撑材料,可以保持储层结构的稳定,防止井筒的坍塌,并提高流体的渗透能力。压裂水平井模型则是在水平井的基础上进行水力压裂,人为地创造出更多的裂缝,以增加储层与井筒间的接触面积,进一步提高天然气的采收率。 在天然气水合物的开采技术分析中,多场耦合是核心概念,涉及热传递、流体动力学和固体应力应变等多个物理场的相互作用。这些耦合效应对于正确描述和预测水合物储层的动态响应至关重要。尤其是在开采过程中,储层的温度、压力和机械强度都会发生显著变化,这些变化通过多场耦合模型能够得到更加准确的反映。 为了确保天然气水合物的高效与安全开采,研究者需要对开采过程中可能出现的环境影响、技术难点等问题进行全面的考量。例如,开采可能引起的海底滑坡、甲烷逃逸对气候变化的影响等,都是需要重点研究的方向。同时,技术上的突破,如改进的热管理方法、新型压裂技术等,也将为未来的商业化开采提供支持。 天然气水合物的降压开采研究是一个复杂而多维的过程,涉及到多场耦合分析、储层孔隙度和渗透率的演化评估以及开采技术的优化。利用COMSOL等仿真工具,结合实际地质数据,可以为这一领域的深入研究和技术开发提供科学的依据和指导。
2025-08-12 12:46:44 120KB
1
基于Matlab的考虑温度与表面粗糙度的三维直齿轮弹流润滑计算程序,接触润滑Matlab程序实现温度与粗糙度控制,考虑温度与表面粗糙度的线接触弹流润滑matlab计算程序 考虑到三维粗糙接触表面,可求解得到油膜温升,油膜压力与油膜厚度 可应用到齿轮上,此链接为直齿轮润滑特性求解 ,温度; 表面粗糙度; 弹流润滑; MATLAB计算程序; 三维粗糙接触表面; 油膜温升; 油膜压力; 油膜厚度; 直齿轮润滑特性。,直齿轮润滑特性求解:三维粗糙表面弹流润滑计算程序 在现代机械设计和维护中,对直齿轮润滑特性的深入研究是提高齿轮使用寿命和效率的关键技术之一。随着计算机技术的发展,Matlab作为一款强大的数值计算和仿真工具,在工程领域中被广泛应用于各种科学计算和模拟。基于Matlab的三维直齿轮弹流润滑计算程序,将温度和表面粗糙度这两个重要的物理因素纳入考虑,为工程技术人员提供了更为精确的直齿轮润滑特性分析。 直齿轮在运行过程中,由于摩擦产生的热量会导致润滑油的温度变化,进而影响油膜的物理特性,如粘度和压力分布,最终影响油膜的形成和润滑效果。另一方面,齿轮的表面粗糙度直接影响齿轮间的接触特性,包括接触应力分布和摩擦系数,进而影响润滑状态。因此,考虑温度和表面粗糙度对于准确模拟直齿轮的弹流润滑特性至关重要。 本计算程序利用Matlab的高效数值计算能力,结合弹流润滑理论,通过编程实现了对三维粗糙表面接触问题的求解。程序能够计算并输出油膜的温度升高、油膜压力分布以及油膜厚度等关键参数,从而帮助设计人员优化齿轮的润滑条件,减小磨损,延长齿轮寿命。 具体来说,该计算程序首先需要构建一个包含温度和表面粗糙度影响的数学模型,该模型能够准确反映直齿轮接触表面的物理特性和润滑状态。然后,程序利用Matlab的数值分析和求解功能,对模型进行计算,得到油膜温升、油膜压力和油膜厚度等参数的分布情况。这些参数是评估直齿轮润滑性能的重要指标。 本程序的应用场景广泛,不仅适用于工业齿轮的润滑设计和故障分析,还可以用于齿轮传动系统的性能优化。通过精确计算和分析,能够为齿轮传动系统的可靠性提供理论支撑,减少因润滑不良导致的故障和停机时间,提高生产效率。 在实际应用中,本计算程序可以作为一个重要的工具,帮助工程师快速评估和优化直齿轮的设计。通过对温度和表面粗糙度的控制,可以有效地调整润滑状态,确保齿轮系统在最佳的润滑条件下工作,从而提高系统的整体性能和耐久性。同时,该程序也可以作为教学和研究工具,用于进一步研究和探讨润滑理论在齿轮传动系统中的应用。 基于Matlab的考虑温度与表面粗糙度的三维直齿轮弹流润滑计算程序,为直齿轮润滑特性分析提供了科学、高效的方法。通过精确模拟和计算,可以有效预测和改善直齿轮的润滑状态,对于机械设计和维护具有重要的现实意义。
2025-08-11 10:20:56 2.17MB xhtml
1