表73中的1x011波形分析
当MOE=1,OSSR=0,CC1E=1,CC1NE=1,CC1P=1,CC1NP=0 分析如下。
· 据③OC1M=110输出比较模式配置为PWM模式1。计数值CNT与CCRx①的值进行比较,根据比较结果输出OCx_REF参考信号波形。
· OCx_REF可以沿着图中的黄色线路到达主模式控制器④,由主模式控制器选择是否作为TRGO输出。(F407中文参考手册中到从模式控制器,应为翻译错误。英文手册中为 To the master mode controller)
· F图中输出使能位⑦CC1E=1与⑧CC1NE=1选通了死区发生器⑥输出的紫色OC1_DT与绿色OC1N_DT线路。
· OC1_REF信号波形进入死区发生器后兵分两路,上面一路经过死区发生器中的上升沿延时器后,变化为上升沿被推后⑤t^DTG时间的紫色OCx_DT信号波形。下面一路信号波形首先由死区发生器中的非门反转为青色波形,然后再经过上升沿延时后变化为绿色OCxN_DT信号波形。
· “出极性⑨CC1P=1,上面一路紫色信号OC1_DT经过了CC1P控制的非门信号反转生成了蓝色波形。
STM32F407是基于ARM Cortex-M4内核的微控制器,广泛应用于嵌入式系统设计。在本主题中,我们关注的是其定时器(TIM)的PWM(脉宽调制)模式,特别是1x011配置,以及捕获比较互补通道输出波形的实现。
PWM模式1(OC1M=110)是一种常见的PWM配置,它允许根据计数器(CNT)与比较寄存器(CCRx)的值来控制输出信号的占空比。当CNT小于CCRx时,输出高电平;当CNT等于或大于CCRx时,输出低电平。这种模式常用于电机控制、电源调节等应用。
在1x011配置下,主输出使能(MOE)被设置为1,这意味着输出信号会被激活。同时,输出使能位(CC1E)和非互补输出使能位(CC1NE)都被置1,这使得死区发生器的输出能够通过紫色的OC1_DT和绿色的OC1N_DT线路到达主模式控制器。死区发生器在PWM输出中引入了一段时间间隔,以防止两个互补输出同时改变状态,避免开关瞬间的电流冲击。
死区时间(Dead-Time)由TIMx_BDTR寄存器中的DTG字段定义,可以根据不同的设置产生不同长度的死区时间。死区时间的长度可以精确调整,以适应不同应用场景的需求。例如,DTG[7:5]=10x,死区时间为(64+DTG[5:0])*tdtg,其中tdtg为DTS周期的两倍。
在输出极性方面,如果CC1P=1,紫色的OC1_DT信号会通过非门反转,生成蓝色波形。这表示PWM输出的高电平部分被延迟,从而确保互补通道的输出能够在适当的时间切换,以避免开关瞬间的电流冲击。
总结一下,STM32F407的PWM模式1(1x011配置)涉及到计数器与比较寄存器的比较,死区发生器的使用以确保互补输出的正确同步,以及输出极性的控制。这一功能对于实时控制系统的精度和稳定性至关重要,是许多工业应用中不可或缺的一部分。理解并熟练掌握这些概念对于开发基于STM32F407的系统设计至关重要。
2025-07-30 21:07:25
581KB
stm32
1