功率预测是能源领域的重要研究课题,特别是在可再生能源利用中占据关键地位的风电场运营中。随着技术的进步,神经网络模型被广泛应用于风功率预测,因其强大的非线性建模能力,能有效处理复杂的气候数据变化。本项目是基于神经网络的风功率预测在MATLAB环境下的具体实现。 我们要理解神经网络的基本概念。神经网络是一种模拟人脑神经元工作原理的计算模型,由大量的节点(神经元)和连接这些节点的边(权重)构成。在风功率预测中,神经网络可以学习并捕获风速、风向等气象参数与风力发电量之间的复杂关系。 MATLAB是一个强大的数学计算软件,它提供了丰富的神经网络工具箱(Neural Network Toolbox),用于构建、训练和测试各种类型的神经网络模型。在这个项目中,我们可能会用到如Feedforward网络(前馈网络)或者Recurrent Neural Networks(循环神经网络),它们都能处理时间序列数据,适合风功率这种具有时间依赖性的预测任务。 文件"yucemin5.m"很可能是实现神经网络模型的MATLAB代码。在这个文件中,开发者可能定义了神经网络结构,如输入层(风速、风向等气象参数)、隐藏层以及输出层(预测的风功率)。同时,它可能包含了训练网络的步骤,如设置学习率、迭代次数等,并使用反向传播算法优化权重。 文件"fengsu5min.mat"和"gonglv5min.mat"是数据文件,分别存储了5分钟间隔的风速和风功率数据。在MATLAB中,.mat文件常用来存储变量或数据集。这两个文件的数据可能被读入到代码中,作为训练和测试神经网络模型的输入。风速是直接影响风力发电机输出功率的关键因素,而风功率则是我们需要预测的目标变量。 在实际应用中,预测模型通常需要经过以下步骤: 1. 数据预处理:清洗数据,处理缺失值,可能需要对风速和风功率进行归一化或标准化操作,以便更好地适应神经网络的训练。 2. 特征选择:选取对风功率影响较大的气象参数作为输入特征。 3. 模型构建:在MATLAB中创建神经网络结构,设定网络层数、节点数、激活函数等。 4. 训练模型:使用历史数据训练神经网络,调整网络参数以最小化预测误差。 5. 验证与调优:通过交叉验证或保留一部分数据来评估模型性能,根据结果调整网络参数或改进模型。 6. 预测:将训练好的模型应用于新的风速数据,得到未来风功率的预测值。 在风功率预测领域,准确的预测可以帮助风电场运营商更有效地调度电力系统,提高经济效益。因此,不断探索和优化预测模型,如使用更先进的神经网络架构,如LSTM(长短时记忆网络)或GRU(门控循环单元),以及集成学习等方法,都是持续的研究方向。
2024-12-09 15:14:49 40KB 风功率预测 神经网络 MATLAB
1
第三届智慧中国杯数据应用大赛 国能日新第二届光伏功率预测赛# 光伏发电具有波动性和间歇性,大规模光伏电站的并网运行对电力系统的安全性和稳定造成较大的影响。对光伏电站输出功率的高精度预测,有助于调度部门统筹安排常规能源和光伏发电的协调配合,及时调整调度计划,合理安排电网运行方式。因此,本题旨在通过利用气象信息、历史数据,通过机器学习、人工智能方法,预测未来电站的发电功率,进一步为光伏发电功率提供准确的预测结果。 包含十个场站的数据及天气数据,第一届为4个场站数据,第二届为10个场站数据。
2024-01-13 19:54:29 36.49MB 数据集 功率预测 发电预测
1
读文章是复现文章的第一步,读有代码文章可以事半功倍!而复现一篇文章是写文章的前提!! 这里献上电力系统优化调度与预测方向研究生必备matlab-yalmip代码!!祝您快速入门,早日发paper!!! 包含需求响应/两阶段鲁棒优化/多目标优化/机会约束/二阶锥松弛/时间序列预测/经验模态分解/微电网经济调度/综合能源系统优化调度/低碳调度/碳交易/综合需求响应/电动汽车/多时间尺度/智能算法/配电网最优潮流/无功优化/共享储能/分布式算法/主从博弈/合作博弈等文献复现matlab代码 代码除特殊说明,均为matlab-yalmip-cplex/gurobi编写与运行!代码有偿,清单及详细介绍请见PDF文档
2023-05-13 21:53:54 55.84MB matlab lstm 软件/插件
1
提出了一种新型光伏逆变器拓扑结构,其由罗氏升压电路、三相四开关逆变单元组成,可以有效提高光伏发电效率、降低光伏系统成本。针对该结构逆变器提出了一种新型前馈功率预测控制策略,其通过将自然环境分区后排列,然后逐一对其历史光伏最大功率进行寻优,从而确定相应的前馈功率预测值。该方法具有计算量小、运算速度快、实现简单、控制精度高、可靠性强的显著优点,可以省去传统逆变器控制的直流侧电压闭环,由逆变器本身完成光伏阵列的最大功率点跟踪功能,从而提高系统响应速度与可靠性。仿真与实验结果均验证了所提结构和控制方法的可行性及优越性。
1
2011电工杯数学建模竞赛A题,风功率数据预测问题,题目和附件数据完整。
2023-03-07 20:10:29 229KB 电工杯 风功率预测
1
训练集数据提供了4个电场的脱敏后的环境数据和电场实际辐照度和电场发电功率。测试集数据提供了4个电场的脱敏后的环境数据,需要利用这些数据预测每个时间点的光伏发电功率。注意: 为了贴近实际应用,环境数据提供的是预测值,不是实测值,训练集中的电场实际辐照度和电场实际发电功率为脱敏后的实测值。 训练集和测试集的描述如下: 训练集有train_1.csv, train_2.csv, train_3.csv, train_4.csv共4个文件,测试集有test_1.csv,test_2.csv,test_3.csv,test_4.csv共4个文件,分别为电场1,电场2,电场3,电场4的训练集数据和测试集数据。 补充说明: 1.实际功率中的负值是因为机组在发电不足时自身会消耗电能。 2.实发幅照度中的负值视为噪声数据。
1
使用樽海鞘算法结合极限学习机,应用风电场数据,根据风速温度等条件对风功率进行预测,效果不错
1
光伏电站短期发电功率预测方法研究,新的算法仿真
1
传统光伏发电功率预测存在因气象因素特征提取不综合不精确而导致预测精度不高的问题. 为了充分挖掘气象因素对光伏出力的影响, 并有效利用深度学习技术在非线性拟合方面的优势, 本文提出了一种基于气象因素充分挖掘的双向长短期记忆(Bi-directional Long Short Term Memory, BiLSTM)网络光伏发电短期功率预测方法. 在对原始数据进行异常值及标准化处理的基础上, 采用K近邻算法(K-Nearest Neighbor, KNN)在外界温度、湿度、压强等诸多气象因素中充分挖掘影响光伏出力的关键因素, 重构多元数据序列, 并在探索输入层时间步长、模型层数及每层维数等超参数的合理设置方案的基础上, 构建BiLSTM网络模型, 实现光伏发电短期功率的高精度预测. 仿真结果表明, 与KNN、深度信念网络(DBN)、BiLSTM、PCA-LSTM等经典方法比较, 所提KNN-BiLSTM方法具有更高的预测精度.
1