基于LSTM的光伏发电功率预测模型构建与多因素分析

上传者: TFRsUuSjl | 上传时间: 2025-11-13 20:15:38 | 文件大小: 511KB | 文件类型: ZIP
内容概要:文章介绍了如何利用LSTM(长短期记忆)神经网络构建光伏发电功率预测模型,综合考虑天气状况、季节变化、时间点和地理位置等多种影响因素,通过数据预处理、模型构建与训练,实现对未来96个时间点光功率的精准预测,并通过可视化图表展示预测结果。 适合人群:具备一定机器学习基础,熟悉Python编程,从事新能源预测、电力系统优化或人工智能应用研发的技术人员。 使用场景及目标:①应用于光伏发电站的功率预测系统,提升电网调度效率;②为研究多因素时间序列预测提供技术参考;③通过LSTM模型实现高精度短期光功率预测,支持能源管理决策。 阅读建议:建议结合代码实践,深入理解LSTM在时间序列预测中的应用机制,重点关注数据预处理与模型参数调优对预测精度的影响。

文件下载

资源详情

[{"title":"( 3 个子文件 511KB ) 基于LSTM的光伏发电功率预测模型构建与多因素分析","children":[{"title":"LSTM","children":[{"title":"2.jpg <span style='color:#111;'> 149.75KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 39.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"718912776578.pdf <span style='color:#111;'> 120.69KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明