1 Scope 11 2 References 11 3 Terms and definitions 12 4 Abbreviations 14 5 Conventions 17 6 Optical transport network interface structure 18 6.1 Basic signal structure 19 6.1.1 OCh substructure 19 6.1.2 Full functionality OTM n.m (n ≥ 1) structure 19 6.1.3 Reduced functionality OTM nr.m and OTM 0.m structure 20 6.2 Information structure for the OTN interfaces 20 7 Multiplexing/mapping principles and bit rates 24 7.1 Mapping 26 7.2 Wavelength division multiplex 27 7.3 Bit rates and capacity 27 7.4 ODUk Time Division Multiplex 28 8 Optical transport module (OTM n.m, OTM nr.m, OTM 0.m) 30 8.1 OTM with reduced functionality (OTM 0.m, OTM nr.m, OTM-0v.m) 30 8.1.1 OTM 0.m 31 8.1.2 OTM nr.m 31 8.1.2.1 OTM 16r.m 31 8.1.2.2 OTM 32r.m 33 8.1.3 OTM 0v.m Error! Bookmark not defined. 8.2 OTM with full functionality (OTM n.m) 35 9 Physical specification of the ONNI 37 9.1 OTM 0.m 37 9.2 OTM nr.m 37 9.2.1 OTM 16r.m 37 9.2.2 OTM 32r.m 37 9.3 OTM n.m 37 9.3 OTM 0v.m Error! Bookmark not defined. 10 Optical channel (OCh) 37 10.1 OCh with full functionality (OCh) 37 10.2 OCh with reduced functionality (OChr) 38 11 Optical channel transport unit (OTU) 38 11.1 OTUk frame structure 38 11.2 Scrambling 40 12 Optical channel data unit (ODUk) 40 12.1 ODUk frame structure 40 13 Optical channel payload unit (OPUk) 41 14 OTM overhead signal (OOS) 41 15 Overhead description 41 15.1 Types of overhead 43 15.1.1 Optical channel payload unit overhead (OPUk OH) 43 15.1.2 Optical channel data unit overhead (ODUk OH) 43 15.1.3 Optical channel transport unit overhead (OTUk OH) 44 15.1.4 Optical channel non-associated overhead (OCh OH) 44 15.1.5 Optical multiplex section overhead (OMS OH) 44 15.1.6 Optical transmission section overhead (OTS OH) 44 15.1.7 General management communications overhead (COMMS OH) 44 15.2 Trail trace identifier and access point identifier definition 44 15.3 OTS OH description 46 15.3.1 OTS trail trace identifier (TTI) 46 15.3.2 OTS backward defect indication – Payload (BDI-P) 46 15.3.3 OTS backward defect indication – Overhead (BDI-O) 46 15.3.4 OTS payload missing indication (PMI) 46 15.4 OMS OH description 47 15.4.1 OMS forward defect indication – Payload (FDI-P) 47 15.4.2 OMS forward defect indication – Overhead (FDI-O) 47 15.4.3 OMS backward defect indication – Payload (BDI-P) 47 15.4.4 OMS backward defect indication – Overhead (BDI-O) 47 15.4.5 OMS payload missing indication (PMI) 47 15.5 OCh OH description 47 15.5.1 OCh forward defect indication – Payload (FDI-P) 47 15.5.2 OCh forward defect indication – Overhead (FDI-O) 47 15.5.3 OCh open connection indication (OCI) 47 15.6 OTUk/ODUk frame alignment OH description 48 15.6.1 OTUk/ODUk frame alignment overhead location 48 15.6.2 OTUk/ODUk frame alignment overhead definition 48 15.6.2.1 Frame alignment signal (FAS) 48 15.6.2.2 Multiframe alignment signal (MFAS) 48 15.7 OTUk OH description 49 15.7.1 OTUk overhead location 49 15.7.2 OTUk overhead definition 50 15.7.2.1 OTUk section monitoring (SM) overhead 50 15.7.2.1.1 OTUk SM trail trace identifier (TTI) 50 15.7.2.1.2 OTUk SM error detection code (BIP-8) 50 15.7.2.1.3 OTUk SM backward defect indication (BDI) 51 15.7.2.1.4 OTUk SM backward error indication and backward incoming alignment error (BEI/BIAE) 51 15.7.2.1.5 OTUk SM incoming alignment error overhead (IAE) 52 15.7.2.1.6 OTUk SM reserved overhead (RES) 52 15.7.2.2 OTUk general communication channel 0 (GCC0) 52 15.7.2.3 OTUk reserved overhead (RES) 52 15.7.3 OTUkV overhead 52 15.8 ODUk OH description 53 15.8.1 ODUk OH location 53 15.8.2 ODUk OH definition 54 15.8.2.1 ODUk path monitoring (PM) overhead 54 15.8.2.1.1 ODUk PM trail trace identifier (TTI) 54 15.8.2.1.2 ODUk PM error detection code (BIP-8) 54 15.8.2.1.3 ODUk PM backward defect indication (BDI) 55 15.8.2.1.4 ODUk PM backward error indication (BEI) 55 15.8.2.1.5 ODUk PM status (STAT) 56 15.8.2.2 ODUk tandem connection monitoring (TCM) overhead 56 15.8.2.2.1 ODUk TCM trail trace identifier (TTI) 58 15.8.2.2.2 ODUk TCM error detection code (BIP-8) 59 15.8.2.2.3 ODUk TCM backward defect indication (BDI) 59 15.8.2.2.4 ODUk TCM backward error indication (BEI) and backward incoming alignment error (BIAE) 59 15.8.2.2.5 ODUk TCM status (STAT) 60 15.8.2.2.6 TCM overhead field assignment 61 15.8.2.2.7 ODUk tandem connection monitoring activation/deactivation coordination protocol 62 15.8.2.3 ODUk general communication channels (GCC1, GCC2) 62 15.8.2.4 ODUk automatic protection switching and protection communication channel (APS/PCC) 62 15.8.2.5 ODUk fault type and fault location reporting communication channel (FTFL) 63 15.8.2.5.1 Forward/backward fault type indication field 63 15.8.2.5.2 Forward/backward operator identifier field 64 15.8.2.5.3 Forward/backward operator specific field 65 15.8.2.6 ODUk experimental overhead (EXP) 65 15.8.2.7 ODUk reserved overhead (RES) 65 15.9 OPUk OH description 65 15.9.1 OPUk OH location 65 15.9.2 OPUk OH definition 66 15.9.2.1 OPUk payload structure identifier (PSI) 66 15.9.2.1.1 OPUk payload type (PT) 66 15.9.2.2 OPUk mapping specific overhead 67 16 Maintenance signals 67 16.1 OTS maintenance signals 68 16.1.1 OTS payload missing indication (OTS-PMI) 68 16.2 OMS maintenance signals 68 16.2.1 OMS forward defect indication – Payload (OMS-FDI-P) 68 16.2.2 OMS forward defect indication – Overhead (OMS-FDI-O) 68 16.2.3 OMS payload missing indication (OMS-PMI) 68 16.3 OCh maintenance signals 68 16.3.1 OCh forward defect indication – Payload (OCh-FDI-P) 68 16.3.2 OCh forward defect indication – Overhead (OCh-FDI-O) 68 16.3.3 OCh open connection indication (OCh-OCI) 68 16.4 OTUk maintenance signals 68 16.4.1 OTUk alarm indication signal (OTUk-AIS) 68 16.5 ODUk maintenance signals 69 16.5.1 ODUk alarm indication signal (ODUk-AIS) 69 16.5.2 ODUk open connection indication (ODUk-OCI) 69 16.5.3 ODUk locked (ODUk-LCK) 70 16.6 Client maintenance signal 71 16.6.1 Generic AIS for constant bit rate signals 71 17 Mapping of client signals 72 17.1 Mapping of CBR2G5, CBR10G, CBR10G3 and CBR40G signals (e.g., STM-16/64/256, 10GBASE-R) into OPUk 72 17.1.1 Mapping a CBR2G5 signal (e.g., STM-16) into OPU1 74 17.1.2 Mapping a CBR10G signal (e.g., STM-64) into OPU2 75 17.1.3 Mapping a CBR40G signal (e.g. STM-256) into OPU3 75 17.1.4 Mapping a CBR10G3125 signal (e.g., 10GBASE-xR) into OPU2e 76 17.2 Mapping of ATM cell stream into OPUk 76 17.3 Mapping of GFP frames into OPUk 77 17.4 Mapping of test signal into OPUk 78 17.4.1 Mapping of a NULL client into OPUk 78 17.4.2 Mapping of PRBS test signal into OPUk 78 17.5 Mapping of a non-specific client bit stream into OPUk 79 17.5.1 Mapping bit stream with octet timing into OPUk 80 17.5.2 Mapping bit stream without octet timing into OPUk 80 17.6 Mapping of other constant bit-rate signals with justification into OPUk 80 17.7 Mapping a 1000BASE-X and FC-1200 signal via timing transparent transcoding into OPUk 80 17.7.1 Mapping a 1000BASE-X signal into OPU0 81 17.7.2 Mapping a FC-1200 signal into OPU2e 88 18 Concatenation 88 18.1 Virtual concatenation of OPUk 91 18.1.1 Virtual concatenated OPUk (OPUk-Xv, k = 1 .. 3, X = 1 .. 256) 91 18.1.2 OPUk-Xv OH description 92 18.1.2.1 OPUk-Xv OH location 92 18.1.2.2 OPUk-Xv OH definition 93 18.1.2.2.1 OPUk-Xv Payload Structure Identifier (PSI) 93 18.1.2.2.1.1 OPUk-Xv Payload Type (vcPT) 93 18.1.2.2.1.2 OPUk-Xv Payload Structure Identifier Reserved overhead (RES) 94 18.1.2.2.2 OPUk-Xv Virtual Concatenation Overhead (VCOH1/2/3) 94 18.1.2.2.2.1 OPUk-Xv Virtual Concatenation MultiFrame Indicator (MFI1, MFI2) 94 18.1.2.2.2.2 OPUk-Xv Sequence Indicator (SQ) 95 18.1.2.2.2.3 OPUk-Xv LCAS Control Words (CTRL) 95 18.1.2.2.2.4 OPUk-Xv LCAS Member Status Field (MST) 95 18.1.2.2.2.5 OPUk-Xv LCAS Group Identification (GID) 95 18.1.2.2.2.6 OPUk-Xv LCAS Re-Sequence Acknowledge (RS-Ack) 95 18.1.2.2.2.7 OPUk-Xv LCAS Cyclic Redundancy Check (CRC) 96 18.1.2.2.2.8 OPUk-Xv VCOH Reserved Overhead 96 18.1.2.2.3 OPUk Mapping Specific Overhead 96 18.2 Mapping of client signals 96 18.2.1 Mapping of CBR signals (e.g., STM-64/256) into OPUk-4v 96 18.2.1.1 Mapping a CBR10G signal (e.g. STM-64) into OPU1-4v 97 18.2.1.2 Mapping a CBR40G signal (e.g. STM-256) into OPU2-4v 98 18.2.2 Mapping of CBR signals (e.g., STM-256) into OPUk-16v 98 18.2.2.1 Mapping a CBR40G signal (e.g., STM-256) into OPU1-16v 100 18.2.3 Mapping of ATM cell stream into OPUk-Xv 101 18.2.4 Mapping of GFP frames into OPUk-Xv 102 18.2.5 Mapping of test signal into OPUk-Xv 102 18.2.5.1 Mapping of a NULL client into OPUk-Xv 102 18.2.5.2 Mapping of PRBS test signal into OPUk-Xv 103 18.2.6 Mapping of a non-specific client bit stream into OPUk-Xv 104 18.2.6.1 Mapping bit stream with octet timing into OPUk-Xv 105 18.2.6.2 Mapping bit stream without octet timing into OPUk-Xv 105 18.3 LCAS for virtual concatenation 105 19 Mapping ODUj signals into the ODTUjk and ODTU? signals 105 19.1 OPUk Tributary Slot definition 105 19.1.1 OPU2 Tributary Slot allocation 106 19.1.2 OPU3 Tributary Slot allocation 107 19.1.3 OPU4 Tributary Slot allocation 110 19.1.4 OPU1 Tributary Slot allocation 109 19.2 ODTUjk and ODTU? definitions 110 19.2.1 ODTU12 110 19.2.2 ODTU13 110 19.2.3 ODTU23 110 19.2.7 ODTU01 110 19.2.8 ODTU? Error! Bookmark not defined. 19.3 Multiplexing ODTUjk and ODTU? signals into the OPUk 111 19.3.1 ODTU12 mapping into one OPU2 2.5G Tributary Slot 111 19.3.2 ODTU13 mapping into one OPU3 2.5G Tributary Slot 112 19.3.3 ODTU23 mapping into four OPU3 2.5G Tributary Slots 113 19.3.4 ODTU01 mapping into one OPU1 1.25G Tributary Slot 114 19.4 OPUk Multiplex Overhead 115 19.4.1 OPUk Multiplex Structure Identifier (MSI) 118 19.4.1.1 OPU2 Multiplex Structure Identifier (MSI) 119 19.4.1.2 OPU3 Multiplex Structure Identifier (MSI) 119 19.4.1.3 OPU4 Multiplex Structure Identifier (MSI) 120 19.4.1.4 OPU1 Multiplex Structure Identifier (MSI) Error! Bookmark not defined. 19.4.2 OPUk Payload Structure Identifier Reserved overhead (RES) 120 19.4.3 OPUk Multiplex Justification Overhead (JOH) 121 19.4.3.1 Asynchronous Mapping Procedure Error! Bookmark not defined. 19.4.3.2 Asynchronous Generic Mapping Procedure Error! Bookmark not defined. 19.4.4 OPU4 Multi Frame Identifier overhead (OMFI) 121 19.5 Mapping ODUj into ODTUjk 121 19.5.1 Mapping ODU1 into ODTU12 122 19.5.2 Mapping ODU1 into ODTU13 123 19.5.3 Mapping ODU2 into ODTU23 124 19.5.4 Mapping ODU0 into ODTU01 126 ODU0 into OPUk Tributary Slot Mapping Error! Bookmark not defined. 19.6 Mapping ODUj into ODTU
2025-12-25 16:30:53 1.88MB G.709
1
随着Triple-play业务的发展,除了上网等数据业务外,话音和视频业务也需要统一承载在网络层面上,这就对业务传送网络的质量提出了更高要求。运营商关注的重点已经从提供带宽转向提供电信级的宽带运营,关注如何对带宽进行灵活调度,如何简化网络结构,如何完善网络管理,如何提供不同等级的 QoS保证,从而使整个网络能够充分满足业务需求,并保证传送网具有较高的带宽利用率。 标题“Triple-play:光传送网的新任务”指出的是在信息技术领域中,随着Triple-play服务的兴起,光传送网络正面临新的挑战和需求。Triple-play业务指的是整合了互联网、电话和电视三项服务的套餐,旨在为用户提供全方位的通信体验。这种业务模式在全球范围内,尤其是在欧美和中国,已经成为电信运营商提升竞争力和经济效益的重要手段。 描述中提到,Triple-play服务对网络的性能和可靠性提出了更高的标准。网络必须保证极高的可用性,至少达到99.999%的稳定性,确保无故障运行时间。网络需要具备强大的保护机制,能在极短时间内(毫秒级别)恢复服务,以应对可能的中断。此外,由于话音和视频业务对延迟、抖动和丢包率有严格要求,因此网络必须能提供良好的服务质量(QoS)保证,如时延不超过40毫秒、抖动不超过10毫秒、丢包率不超过0.1%。另外,随着视频业务的需求增长,网络带宽的扩展性和设备处理能力也需要相应增强,同时还需要支持特定的业务功能,例如IPTV中的组播能力。 从QoS的角度看,传统的宽带网络,如ADSL,由于其设计目的主要针对浏览和下载等低QoS要求的应用,因此在承载Triple-play服务时存在不足。然而,随着话音和视频服务的集成,运营商的关注点已从单纯提供带宽转向提供电信级的宽带服务,强调带宽的灵活调度、网络结构的简化、管理的完善以及不同级别的QoS保证,以满足Triple-play服务的需求,同时优化带宽利用率。 光传送网,特别是多业务传输平台(MSTP)和波分复用(WDM)技术,成为了承载Triple-play业务的理想选择。MSTP可以通过增加数据单板来扩展宽带接入,实现广度和深度覆盖。深度覆盖则依赖于MSTP的以太网交换、弹性分组环(RPR)和多协议标签交换(MPLS)等技术,实现带宽的统计复用和精细管理。WDM系统以其海量带宽和灵活性,通过多业务光传输单元(OTU)、T-MUX等技术,能高效地处理大颗粒业务,降低了建网成本并提高了资源利用率。 采用光网络承载Triple-play业务,不仅能提高网络监控和维护能力,减少业务选择的风险,还能实现降低资本支出(CAPEX)和运营支出(OPEX),实现统一建网和按需建设的策略,以适应全业务竞争的市场环境。因此,MSTP和WDM是降低运营成本的理想解决方案,能有效支持Triple-play服务的高效、稳定运行。
2024-07-14 21:41:39 23KB 职场管理
1
本文提出当今解决光传送网所面临问题的方法,是采用既能低成本建网又能智能化完成交换连接的自动交换光网络(ASON);介绍回顾了光传送网ASON技术的产生和取得的成果,以及ASON中几种关键控制平面技术的发展情况;阐述了ASON控制平面与传统传送网的本质区别、管理平面智能化管理特点所带来的3种优点,以及传送平面中光交叉连接(OXC)的6种主要交换结构、发展方向和存在的主要问题;最后综述了新一代基于数字同步系列(SDH)提供多种业务、集成传输、交换和路由功能的多业务传送平台(MSTP)技术,并描述其新功能和远期目标。
2024-03-23 13:42:23 36KB 职场管理
1
本文提出当今解决光传送网所面临问题的方法,是采用既能低成本建网又能智能化完成交换连接的自动交换光网络(ASON);介绍回顾了光传送网ASON技术的产生和取得的成果,以及ASON中几种关键控制平面技术的发展情况;阐述了ASON控制平面与传统传送网的本质区别、管理平面智能化管理特点所带来的3种优点,以及传送平面中光交叉连接(OXC)的6种主要交换结构、发展方向和存在的主要问题;最后综述了新一代基于数字同步系列(SDH)提供多种业务、集成传输、交换和路由功能的多业务传送平台(MSTP)技术,并描述其新功能和远期目标。
2024-03-23 12:43:40 36KB 职场管理
1
供应商、企业以及服务提供商认为100G 系统最终会在市场上得到真正实施。推动其实施的主要力量是用户持续不断的宽带需求。各种标准组织正在制定传送网和以太网以及光接口100G 标准。对于希望在标准发布之前,先期设计100G 系统的开发人员而言, FPGA由于自身的灵活性而发挥了非常重要的作用。Altera 的StratixIVGTFPGA 在40-nm 技术节点提供集成11.3-Gbps 收发器,解决了100G 传送网和100G 以太网遇到的问题。这些FPGA 是设计100G 系统的理想平台,提供高性价比并且有助于产品迅速面市的解决方案。   目前的网络载荷不断增大,供应商很难实施并管理他们的高级系统。为适应对带宽不断增长的需求,光传送网(OTN) 成为下一代骨干网络。光纤迅速替代了铜线和其他介质,成为最快、最可靠的传输介质。   网络最重要的两方面是速度和可靠性。网络必须一直保持畅通,必须很快。然而,网络载荷一直在急速增长。数据是网络承载的一小部分业务。语音和多媒体现在是网络承载的主要业务。   从2007 年到2012 年, IP 总流量将增加6 倍,几乎每两年就翻倍。2012 年之前, 流量每年增长522exabytes(1018 ,即zettabyte 的一半) 。这种指数增长的主要推动力量是高清晰视频和高速宽带消费类应用。   满足宽带需求   最终用户不希望他们的网络服务出现任何中断。他们希望视频会议有流畅的画面和声音,就像电视和电话一样。OTN 是唯一能够支持100G 以太网(GbE)LANPHY 的骨干网传送层技术,是下一代以太网标准,也是满足速度和可靠性要求的唯一标准。在出现新技术之前, OTN 将一直是主流标准,因为它速度最快,效率最高。OTN 支持非常高的传输速度,而且还能够灵活的扩容,以满足未来的需求。   任何形式的电子通信都包括数据包或者分组数据流、用户要发送的信息、传输介质,以及承载数据包所使用的传送方式等。传送速度越快,数据包到达越快。但是, 问题出现在发送端和接收端,数据包到达太快,以至于来不及转发出去。因此,为提高效率,通信企业采用了OTN 。
2023-04-09 14:50:28 1019KB FPGA网络
1
计算机网络光传送网, OTN,计算机网络基础
2022-11-18 19:16:44 34.93MB 网络通信
1
中文翻译,带有自己的注解
2022-09-03 14:04:29 3.16MB OTN G.709 中文翻译 光通信
1
5G光传送网技术
2022-06-20 17:05:23 400KB 5g
未来光传送网(OTN+PTN) 1、随着新型业务网络的发展,网络的核心正在由TDM(时分复用)向IP转变,通信网呈现出扁平化、IP化、宽带化和移动化网络融合的发展方向。 2、面对全网IP化和数据业务的驱动对传送网提出新的要求。 3、全光网络是未来传送网发展的必然趋势。 4、目前光/电转换的SDH+WDM传送网组网方式带宽利用率不高,缺乏灵活性;SDH本身技术特点已经不适合IP为核心的数据业务的发展需求,而WDM则是组网能力差,保护能力弱,也急需改进。 5、未来传送网要有一定的智能化,要有更高的安全性、更高的速率、更高的带宽、更高的带宽利用率、更长的传输距离和强大的网管功能。 6、智能光传送网(ASON)是未来光传送网的发展方
2022-04-08 17:52:58 6.75MB OTN,PTN
1
本文主要介绍当前光网络技术的现状,并重点对于100G、40G、OTN、PTN 技术发展进行详细的描述,特别针对各种技术的应用情况做了详尽分析,并介绍了烽火通信在光网络技术上的努力与成果,最后对下一步光网络技术的发展方向进行了展望。
1