一种新的射影重建算法,刘侍刚,彭亚丽,该文提出了一种新的射影重建算法,该算法利用所有的图像序列构成的行向量生成的线性子空间之和与射影重建结构点构成的行向量生成
2024-03-01 22:56:56 233KB 首发论文
1
基于深度学习的SRGAN图像超分重建算法,该资源为本人博客https://wuxian.blog.csdn.net/article/details/125034820中介绍的算法实现代码,包含训练测试数据集和完整代码,代码中已添加完整中文注释,详细原理和代码介绍请参考博客内容。代码已经过调试,可完美运行,关于训练用的COCO数据集下载请见博客给出,注意:请按照博客中给定的python环境和依赖库版本进行安装,否则可能会出现环境不兼容问题。
2023-11-29 16:05:19 297.44MB python 数据集 SRGAN 超分重建
1
在离轴数字全息的应用研究中,将数字全息图视为单位振幅平面波照射下的光波场,利用1次快速傅里叶变换(FFT)计算菲涅耳衍射积分是最流行的物光波前重建方法(简称1-FFT法)。然而,用球面波为重建波,利用像平面滤波技术及角谱衍射理论,存在需要4次FFT的另一种波前重建方法(简称FIMG4FFT法)。基于快速傅里叶变换理论对这两种方法进行研究。结果表明,尽管FIMG4FFT重建方法需要进行4次FFT计算,却能用较少的计算资源高效率地重建同等质量的物光场。为便于实际应用,详细给出FIMG4FFT方法在彩色数字全息图像重建及物体微形变检测中的应用实例。
2023-08-10 15:53:50 7.64MB 全息 彩色数字 波前重建 计算数字
1
基于压缩感知(CS)的磁共振成像(MRI)是一种利用磁共振(MR)图像的稀疏性的快速成像技术,经典CS-MRI重建数学模型是在包含线性合成非平滑正则约束下的最优化问题。针对重建模型中的线性合成正则项提出利用原始-对偶框架同时求解原始-对偶问题,对原始-对偶问题的增广Lagrangian形式求解其最优解,提出了一种原始-对偶迭代重建算法;对于非平滑正则项的处理,提出使用Moreau包络进行平滑近似,然后利用近似算子得到平滑近似函数的导数形式。用体模图像和真实MR图像,与共轭梯度算法(CG)、算子分离算法(TVCMRI)、变量分离算法(RecPF)和快速混合分离算法(FCSA)进行比较,表明该算法重建效果最好,算法复杂度与最快的FCSA算法相当。
2023-04-20 20:39:47 1.26MB 论文研究
1
为依据少量声波飞行时间数据较高精度地重建温度场,提出了一种基于径向基函数和奇异值分解的声学CT温度场重建新算法。采用新算法对单峰和双峰温度场模型进行了仿真数据重建,重建结果表明,与高斯函数正则化重建算法、代数重建算法相比,新算法的重建精度有明显改善。采用新算法对实验室内的均匀温度场和加热温度场进行了实测数据重建,重建结果与被测温度场一致,且均匀温度场的重建均方根百分误差仅为0.31%。由于新算法重建速度快、重建精度高、抗干扰能力较强,可望用于复杂温度场的在线重建。
1
压缩感知(CS)是一种新的信号采样、处理和恢复理论,能够显著地降低高频窄带信号的采样频率。针对稀疏度未知信号的重建,提出了步长自适应前向后向追踪(AFBP)算法。不同于固定步长前向后向追踪(FBP)算法,AFBP的步长可变。它利用一种自适应阈值的方法选取前向步长,然后对候选支撑集进行正则化处理以保证其可靠性,接着用自适应阈值与变步长双向控制的方法选取后向步长以减少重建时间。AFBP能够自适应后向删除估计支撑集中部分错误索引以提高信号准确重建概率。在稀疏信号非零值服从常见分布条件下,用AFBP、FBP等算法进行重建的结果表明,AFBP的准确重建概率、重建精度与FBP相当,重建时间明显少于FBP,能够更高效地重建稀疏度未知信号。
1
基于python的三维重建算法Structure from Motion(Sfm)实现代码
2023-03-14 17:15:19 5KB python 算法 开发语言 三维重建算法
针对序列图像超分辨率重建非局部均值(non-local means,NLM)算法重建结果图像边缘区域过平滑的问题,提出了一种局部参数自适应改进方法。将整幅图像划分为图像子块,然后根据图像子块平均像素信息计算出其对应的滤波参数,这样有助于减少因整幅图像使用统一滤波参数而导致的某些高频信息的丢失。实验结果表明,与经典NLM重构算法相比,改进算法重建出的结果图像的轮廓边缘更清晰,字符辨识度更高;在算法实现方面,图像重构程序在CPU/GPU平台上实现,使用GPU并行化加速的程序比单CPU运算的程序,加速比最高可达
2023-01-04 13:47:08 1.71MB 工程技术 论文
1
你好, 只是为了提供帮助并获得一些快速的初步结果,我加载了 3 个重建算法和一个处理器脚本来调用前向算子和每个算法,即 CGNE、Tikhonov 重建和滞后扩散率定点迭代。 我只是想从任何使用代码的人那里得到一些反馈。 代码中提供了可以找到更多信息的参考资料。 不需要任何版权或许可,因为这不是一个完整的专业工具箱,结果应该不会太多,但我仍然需要填写一些框来完成此加载。 让我简要介绍一下这里算法中没有的东西; 算法并没有真正处理噪音,因为这必须由用户针对每个问题进行定义。 滞后扩散率算法的正则化参数选择属于我们的隐私,因为它是一些数学运算的结果。 此外,要为每个问题定义边界条件。 附图是将代码应用到 Per Christian Hansen 提供的 tomo.m 文件后的滞后扩散算法的结果。 我还在 Emission Tomography 上测试了相同的代码,其前向算子和测量由 John
2023-01-03 23:35:35 32KB matlab
1
正电子发射断层扫描仪(Positron Emission Tomography, PET)是当前医学界公认的肿瘤、心脏、脑等疾病诊断与病理生理研究的重要方法。随着核医学影像设备的广泛应用和计算机技术的迅速发展,图像重建方法作为PET成像的一个关键环节,其研究工作也越发受到重视。 PET探测器检测注入人体的示踪剂在湮灭辐射过程中产生的射线,经过符合采集系统处理形成投影线,以SINO的方式存放于计算机硬盘中[1]。计算机调用图像重建模块,生成人体断层图像。目前,PET图像基础重建算法主要包括解析法和迭代法。 1. 解析法 解析法是以中心切片定理为基础的反投影方法,常用的是滤波反投影法(Filtered Back-Projection, FBP)。在FBP中,图像重建主要包含两个步骤:反投影和滤波。 我们在初中就已经学过投影与反投影的概念,从不同角度观察物体可以得到不同的信息,当我们从多种不同角度获取物体的投影,可以反向推出这个物体真实的形态。 图1 光线将物体的形状投射到一个平面称为投影 在成像原理上,PET和CT略有差异。CT是投射成像,X射线旋转360°,采集被扫描物体不
2022-12-07 13:26:59 3KB CT重建算法 matlab 编程 CT图像处理
1