在本项目中,我们将深入探讨如何使用TensorRT部署SuperPoint和SuperGlue算法,这是一个优质的算法部署实战案例。TensorRT是NVIDIA推出的一款高性能的深度学习推理(Inference)优化和运行时库,它能够为深度学习模型提供高效的运行速度和低延迟。SuperPoint和SuperGlue是计算机视觉领域的关键算法,分别用于特征检测与描述以及特征匹配。 让我们了解SuperPoint算法。SuperPoint是一种自监督学习的局部特征检测和描述符方法,它的设计目标是能够在各种复杂的环境和光照条件下稳定地提取出图像的关键点,并为其分配独特的描述符。该算法通过对比度度量、响应度选择和几何一致性检查等步骤,确保了所提取特征的质量和稳定性。 接下来是SuperGlue,它是一个两阶段的特征匹配框架。在第一阶段,SuperGlue利用图神经网络(GNN)来学习特征之间的关系,以增强匹配的准确性。第二阶段,它采用了一种基于注意力的匹配策略,根据特征之间的相似性进行加权,从而提高匹配的鲁棒性。SuperGlue在图像配对、姿态估计和三维重建等领域有着广泛的应用。 TensorRT在部署SuperPoint和SuperGlue时的角色至关重要。它通过将深度学习模型转换为高效的C++接口,可以显著加速推理过程。TensorRT支持模型的优化,包括量化、裁剪和层融合,这些技术有助于减少计算资源的需求,同时保持模型的精度。在实际应用中,这通常意味着更快的处理速度和更低的功耗。 在实战项目中,我们首先需要将训练好的SuperPoint和SuperGlue模型转换为TensorRT兼容的格式。这通常涉及模型的序列化,以便TensorRT可以理解和优化模型的计算图。然后,我们需要编写C++或Python代码来加载模型,处理输入图像,执行推理,并处理输出结果。在这个过程中,我们需要注意数据类型的转换,以及输入和输出的尺寸和格式,以确保与TensorRT的接口匹配。 为了验证部署效果,我们需要使用测试数据集来评估模型的性能。这可能包括计算特征检测的速度、特征匹配的精度等指标。此外,我们还需要关注模型在不同硬件平台上的表现,比如GPU、CPU或者嵌入式设备,以确定最合适的部署方案。 这个项目将指导你如何利用TensorRT高效地部署SuperPoint和SuperGlue算法,实现高质量的特征检测和匹配。通过实践,你将掌握深度学习模型优化、推理引擎使用以及性能调优等关键技能,这对于在实际的计算机视觉项目中应用这些先进算法具有很高的价值。
2024-07-28 11:48:41 100.54MB TensorRT SuperPoint SuperGlue 优质项目
1
tensorRT部署resnet网络 包括onnx文件生成, 及推理引擎生成, 利用推理引擎推理 环境配置 使用TensorRT来加速部署图片分类项目,此文档中包含全部 软件及依赖库 在Win10系统上完成,需要用到的软件与依赖包有:cuda 10.2 , cudnn 7.6.5 , VS2017 , OpenCV 3.4.0 , Anaconda3 , CMake 3.19.4 , TensorRT 8.0 ,代码附详细解释
2023-03-21 16:50:20 355.09MB tensorRT resnet c++ Python
1
Unet语义分割训练和TensorRT部署
2022-08-15 09:08:39 7.27MB Unet
1
preprocess.cu和preprocess.h文件 TensorRT部署YoloV5使用
2022-08-07 21:05:47 1KB tensorRT部署
1
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,演示如何使用pytorch版本的mobilenetv2图像分类模型实现分类任务。将训练的模型转为onnx,实现onnx的推理,然后再将onnx转为TensorRT,并实现推理。 通过本文你和学到: ​ 1、如何从torchvision.models调用mobilenetv2模型? ​ 2、如何自定义数据集加载方式? ​ 3、如何使用Cutout数据增强? ​ 4、如何使用Mixup数据增强。 ​ 5、如何实现训练和验证。 ​ 6、如何使用余弦退火调整学习率。 ​ 7、如何载入训练的模型进行预测。 ​ 8、pytorch转onnx,并实现onnx推理。 ​ 9、onnx转TensorRT,并实现TensorRT的推理。 希望通过这篇文章,能让大家对图像的分类和模型的部署有个清晰的认识。 链接:https://wanghao.blog.csdn.net/article/details/123003159
2022-02-21 09:28:53 936.29MB pytorch 分类 python 人工智能
使用tensorRT部署的yolov5源码,资源讲解在博客https://blog.csdn.net/Z960515/article/details/121975944
2021-12-24 12:08:06 197.2MB tensorRT yolov5 深度学习
1
CenterNet Pro Max 更新。代码弃用!!!由于某些内部问题,此代码是封闭源代码,对此感到抱歉! 对于想要/咨询/获得CenterNet_Pro_Max的任何资源的任何人,即使我们关闭了该版本的源代码,我也希望为您提供帮助。也欢迎社区加入这个dicuss平台来谈论AI: 为什么叫这个名字?因为此存储库基于centernet-better,而有人将其开源,所以另一个实现称为centernet-better-plus,因此我们必须使用以下名称:centernet_pro_max。 此仓库是原始CenterNet的重建。与大多数基于detectron2或mmdetection的实现不同,高度模块化的代码库使用户难以理解基本思想是什么。因此,在此存储库中,我们使它尽可能简单,并使您可以自定义任何想法或拥有的任何新体系结构。 此版本建立在Centernet-Better的基础上,但与原始
2021-12-19 01:55:18 5KB
1
使用TensorRT来加速部署YOLOv5项目,此文档中包含全部 软件及依赖库 在Win10系统上完成,需要用到的软件与依赖包有:cuda 10.2 , cudnn 7.6.5 , VS2019 , OpenCV 3.4.0 , Anaconda3 , CMake 3.19.4 , TensorRT 7 安装使用使用教程:https://blog.csdn.net/weixin_39588099/article/details/119994675?spm=1001.2014.3001.5502
2021-08-30 14:15:44 169KB YOLOv5 TensorRT
移动式yolov5修剪蒸馏 mobilev2-yolov5s的通道修剪和蒸馏。超轻但性能更好! TensorRT版本===> Android版本===> 背景 yolov5s在640x640分辨率下的计算量和参数量分别为8.39G和7.07M。在速度上仍然有提升空间,通过替换backbone(mobilenetv2),通道剪枝对模型进行压缩。 。本项目以工程化为基础,主要是模型端的优化。实现了常用的剪枝和蒸馏算法,并完成了一个简单的介绍和评估。将工程可用模型转换成对应的部署版本。 基准线 数据集采用Pascal VOC,训练集= train2007 + train2012 + val2007 + val2012,测试集= test2007,基线采用mobile-yolo(imagenet预训练),如果没有特别说明,第一个模块采用重点如果特定特殊说明则可以使用替换参数,batchsize
2021-03-30 20:19:06 5.91MB pruning ncnn distillation yolov5
1