,梁静云, ,瑞士苏黎世联邦理工学院 [] :sparkles: 一些直观的例子: ; ; ; ; 测试代码 (从或下载以下模型)。 RRDB.pth ---> ESRGAN.pth ---> FSSR_DPED.pth ---> FSSR_DPED.pth ---> RealSR_DPED.pth ---> RealSR_JPEG.pth ---> BSRNet.pth :seedling: BSRGAN :seedling: 大意 设计一个新的降级模型以合成用于训练的LR图像: 1)使模糊,下采样和噪点更加实用 模糊:来自HR空间和LR空间的各向同性和各向异性高斯核的两个卷积 下采样:最近,双线性,双三次,下采样 噪声:高斯噪声,JPEG压缩噪声,处理过的相机传感器噪声 2)降级混洗:我们执行随机混洗的降级以合成LR图像,而不是使用常用的模糊/下采样/降噪管道 关于建议的降级模型的一些注意事项: 降级模型主要用于
1
RealSR ncnn Vulkan ncnn通过内核估计和噪声注入超分辨率实现真实世界的超分辨率。 realsr-ncnn-vulkan使用作为通用神经网络推理框架。 下载适用于Intel / AMD / Nvidia GPU的Windows / Linux / MacOS可执行文件 该软件包包括所需的所有二进制文件和模型。 它是可移植的,因此不需要CUDA或Caffe运行时环境:) 关于RealSR 通过内核估计和噪声注入实现真实世界的超分辨率(CVPRW 2020) 纪小中,曹云,泰英,王成杰,李吉林和黄飞跃 腾讯优途实验室 我们的解决方案在两个赛道上均获得了CVPR NTIRE 2020真实世界超高分辨率挑战赛的冠军。 用法 示例命令 realsr-ncnn-vulkan.exe -i input.jpg -o output.png -s 4 完整用法 Usage: re
2021-10-29 18:51:36 61.87MB amd gpu vulkan intel
1
RealSR 通过内核估计和噪声注入实现真实世界的超分辨率 纪小中,曹云,泰英,王成杰,李吉林和黄飞跃 腾讯优途实验室 我们的解决方案在两个赛道上均获得了CVPR NTIRE 2020真实世界超高分辨率挑战赛的冠军。 (官方PyTorch实施) 更新-2020年9月2日 培训代码可从 更新-2020年5月26日 添加模型。 提供了基于。在Windows / Linux / macos上测试您自己的图像。有关更多详细信息,请参见 用法./realsr-ncnn-vulkan -i in.jpg -o out.png -x使用合奏 -g 0选择GPU ID。 介绍 不管模糊和噪点如何,最新的最新超分辨率方法在理想数据集上均实现了令人印象深刻的性能。但是,这些方法在现实世界中的图像超分辨率中始终会失败,因为它们大多数都从高质量图像中采用简单的三次三次向下采样来构造低分辨率(LR)和高分辨率(
1