内容概要:本文详细介绍了使用kNN分类算法和Python语言进行验证码识别的工作。首先,对验证码及其识别现状进行了全面概述,探讨了验证码识别的理论背景。然后,深入研究并实现了以kNN算法为核心的验证码识别系统,涵盖了系统的需求分析、模块设计等方面,最终成功设计出一个界面简洁、功能完整的验证码识别工具。 适合人群:对机器学习尤其是分类算法感兴趣的学生和技术人员,以及从事验证码识别相关工作的研究人员。 使用场景及目标:适用于需要理解和应用kNN算法进行图像识别(特别是验证码)的项目。目标是帮助读者掌握验证码识别的基本原理和具体实现方法。 阅读建议:读者可以通过本文了解kNN算法的应用实例,同时学习到从需求分析到系统实现的完整流程,建议配合实际操作加深理解。
2026-01-07 16:58:27 729B 机器学习 kNN算法 Python 验证码识别
1
验证码识别,使用exe进行训练集标识,无代码基础也可进行训练集标注,理论上准确率可以到百分之百,压缩包里有一部分我做好的字模和一部分测试数据,下载后可以直接用我的数据进行测试。 支持的调用方式有:易语言、VB、VB-NET、VB、TC、python、Delphi、C++、C#、按键精灵等,理论上只要是能调用dll就可以使用,如果有什么问题的话可以在线面的文章中留言,我会定期查看并回复大家的问题 https://editor.csdn.net/md/?articleId=125498768
2024-03-13 19:50:22 16.55MB python 验证码
1
破解滑块验证码的思路主要有2种: 获得一张完整的背景图和一张有缺口的图片,两张图片进行像素上的一一对比,找出不一样的坐标。 获得一张有缺口的图片和需要验证的小图,两张图片进行二极化以及归一化,确定小图在图片中间的坐标。 之后就要使用初中物理知识了,使用直线加速度模仿人手动操作 本次就使用第2种,第一种比较简单。废话不多说,直接上代码: 以下均利用无头浏览器进行获取 获得滑块验证的小图片 def get_image1(self,driver): 获取滑块验证缺口小图片 :param driver:chrome对象 :return:缺口小图片
2023-03-26 19:43:05 129KB python 验证码 验证码识别
1
1.环境 python3.7 selenium webdriver PIL Image 2.下面demo是截取“去哪儿”官网的验证码 # -*- coding=utf-8 -*- # CodeDemo.py # PyCharm Slade 2019/7/20 # import selenium,os from selenium import webdriver from PIL import Image def aucthcode(coderddr): """ 传参验证码的Xpath 页面全图为'code.png' 命名这个你们开心就好 验证
2023-03-13 16:47:06 38KB 验证码
1
写爬虫有一个绕不过去的问题就是验证码,现在验证码分类大概有4种: 图像类 滑动类 点击类 语音类 今天先来看看图像类,这类验证码大多是数字、字母的组合,国内也有使用汉字的。在这个基础上增加噪点、干扰线、变形、重叠、不同字体颜色等方法来增加识别难度。 相应的,验证码识别大体可以分为下面几个步骤: 灰度处理 增加对比度(可选) 二值化 降噪 倾斜校正分割字符 建立训练库 识别 由于是实验性质的,文中用到的验证码均为程序生成而不是批量下载真实的网站验证码,这样做的好处就是可以有大量的知道明确结果的数据集。 当需要真实环境下需要获取数据时,可以使用结合各个
2022-12-30 20:35:50 106KB python 二值化 示例
1
首先安装一个需要用到的模块 pip install social-auth-app-django 安装完后在终端输入pip list会看到 social-auth-app-django 3.1.0 social-auth-core 3.0.0 然后可以来我的github,下载关于滑动验证码的这个demo:https://github.com/Edward66/slide_auth_code 下载完后启动项目 python manage.py runserver 启动这个项目后,在主页就能看到示例 前端部分 随便选择一个(最下面的是移动端,不做移动端不要选)把html和js代码复制过来
2022-10-14 11:21:12 139KB data python 验证码
1
前言 今天这篇文章主要记录一下如何切分验证码,用到的主要库就是Pillow和Linux下的图像处理工具GIMP。首先假设一个固定位置和宽度、无粘连、无干扰的例子学习一下如何使用Pillow来切割图片。 使用GIMP打开图片后,按 加号 放大图片,然后点击View->Show Grid来显示网格线: 其中,每个正方形边长为10像素,所以数字1切割坐标为左20、上20、右40、下70。以此类推可以知道剩下3个数字的切割位置。 代码如下: from PIL import Image p = Image.open(1.png) # 注意位置顺序为左、上、右、下 cuts = [(20,20
2022-03-30 16:31:35 98KB python python算法 图片
1
主要给大家介绍了关于python中验证码连通域分割的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2022-03-30 16:28:10 41KB python 连通域分割 python 验证码分割
1
本资源提供的是一个django框架下的网站验证码技术,通过python代码调用PIL库生成图形验证码然后通过json方式将验证码字段和图片通过base64格式传输给前端,前端可以点击更换验证码(不用刷新页面),对输入进行校验。 注意:本资源提供的是一整套web网站验证码项目,不是单纯的生成验证码的代码。可以在django环境下直接运行,需要pil库。做到了生成,点击更换,校验等基本功能,基本满足网站验证码要求.实现简单,适合初学者参考。
2022-01-20 17:50:07 12.97MB python 验证码 django
1
今天小编就为大家分享一篇Selenium+Python 自动化操控登录界面实例(有简单验证码图片校验),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-12-14 00:57:04 84KB Selenium Python 验证码 图片
1